摘要:
Wafer-level electronic packages having waveguides and methods of fabricating chip-level electronic packages having waveguides are disclosed. A representative chip-level electronic package includes at least one waveguide having a waveguide core. In addition, another representative chip-level electronic package includes a waveguide having an air-gap cladding layer around a portion of the waveguide core. A representative method for fabricating a chip-level electronic package includes: providing a substrate having a passivation layer disposed on the substrate; disposing a waveguide core on a portion of the passivation layer; disposing a first sacrificial layer onto at least one portion of the passivation layer and the waveguide core; disposing an overcoat layer onto the passivation layer and the first sacrificial layer; and removing the first sacrificial layer to define an air-gap cladding layer within the overcoat polymer layer and around a portion of the waveguide core.
摘要:
A circuit board has embedded optical fibers terminating in fiber ends which face into holes defined in the circuit board and optoelectronic emitter or detector modules mounted in the holes in optical coupling with the fiber ends. Each module is electrically connected to circuit traces on the circuit board and is optically coupled to one or more optical fibers terminating on a side surface of the hole. The modules have an optical axis oriented into the hole and a reflector supported in the hole for optically coupling the photo emitter/detector module with the fiber ends on the side surface of the hole.
摘要:
A thermo-optic device may be formed with trenches that undercut the substrate beneath the thermo-optic device. Through the removal of the underlying substrate, the heat dissipation of the thermo-optic device may be reduced. This may reduce the thermal budget of the device, reducing the power requirements for operating the device in some embodiments.
摘要:
A method of deploying a passive optical combiner that is a broad bandwidth spectral wavelength combiner for combining the outputs from multiples transmitter photonic integrated circuit (TxPIC) chips and, thereafter, the amplification of the combined channel signals with a booster optical amplifier couple between the passive optical combiner and the fiber transmission link. The booster optical amplifier may be a rear earth fiber amplifier, such as an erbium doped fiber amplifier (EDFA), or one or more semiconductor optical amplifiers (SOAs) on one or more semiconductor chips. Such a combination of optical components simplifies the design of individual TxPICs and other such optical communication PICs, which has to take into consideration the nonlinear effects of difficult, high loss single mode fiber (SMF) links or other fiber-type links by allowing a higher power per channel to be achieved compared to the case where channel amplification is attempted directly on the TxPIC chip through the deployment of on-chip optical amplifiers, such as semiconductor optical amplifiers (SOAs), integrated in locations following the electro-optic (EO) modulators, if not integrated also at other locations on the same chip
摘要:
An optical network may include a detector for detecting the power of each of a plurality of channels of a wavelength division multiplexed optical signal in one embodiment of the present invention. Each channel may be conveyed to an interface underneath a detector by way of a core formed in the substrate. The interface may include a trench with one side surface angled to form a reflector to reflect light upwardly to be detected by the detector. The trench may be filled with a convex microlens.
摘要:
A set of interlocking modules supports and connects a die containing lasers, a set of precision molded lenses and a set of beam switching elements. Another embodiment of the invention is a structure for mounting a logic chip and an optical chip on a chip carrier, with the optical chip being mounted on the side of the carrier facing the system board on which the carrier is mounted, so that radiation travels in a straight path from optical sources on the optical chip into optical transmission guides on the board.
摘要:
A product management method for securing interests of a just rightful claimant of an intellectual property right is provided. The product management method is a product management method for a display module including a circuit formed by integrating a transistor which is formed using a thin film semiconductor on an insulating substrate, which, in a manufacturing process of the transistor, forms characters, a figure, a symbol, or a numeral, or a combination thereof on any one of thin films constituting the transistor, indicates attribution of an intellectual property right pertaining to the display module according to the characters, the figure, the symbol, or the numeral, or the combination thereof, and secures interests of a just rightful claimant of an intellectual property right.
摘要:
In an embodiment, light from a single mode light source may be deflected into a low index contrast (LIC) waveguide in an opto-electronic integrated circuit (OEIC) (or nullopto-electronic chipnull) by a 45 degree mirror. The mirror may be formed by polishing an edge of the die at a 45 degree angle and coating the polished edge with a metal layer. Light coupled into the LIC waveguide may then be transferred from the LIC waveguide to a high index contrast (HIC) waveguide by evanescent coupling.
摘要:
An optical communications system including a method and apparatus with an electro-optical chip which includes optical interface elements in optical interface array configuration on a first side of the electro-optical chip, attached to or integrated with an optical circuit board which includes a plurality of layered optical wave guides, a plurality of coupling elements disposed relative to the electro-optical chip such that the plurality of coupling elements optically communicate with the first plurality of optical interface elements on the electro-optical chip, and wherein the coupling elements are further disposed to optically communicate with the plurality of optical wave guides.
摘要:
Numerous novel structures and methods are presented for their ability to correct angular and offset alignment errors caused by thermal distortion of a device formed out of dissimilar materials, such as a movable platform and waveguide coupled to a fixed platform and another waveguide. A flexure connected between two platforms corrects offset alignment errors along the centerline axis of the flexure. Thermal distortion is corrected also by varying the relative size of the two platforms and the addition of slots and/or extraneous waveguides. A waveguide may be sandwiched between two matching materials, with or without an extra thermal compensation layer portion. A method uses simple processes to build a substrate with matching waveguides on each side of the substrate. Another simple method creates a suspended structure by using simple semiconductor processes.