Abstract:
A method for selectively depositing a metal film onto a substrate is disclosed. In particular, the method comprising flowing a metal precursor onto the substrate and flowing a non-metal precursor onto the substrate, while contacting the non-metal precursor with a hot wire. Specifically, a reaction between a tungsten precursor and a hydrogen precursor selectively forms a tungsten film, where the hydrogen precursor is excited by a tungsten hot wire.
Abstract:
A method for selectively depositing a metal film onto a substrate is disclosed. In particular, the method comprising flowing a metal precursor onto the substrate and flowing a non-metal precursor onto the substrate, while contacting the non-metal precursor with a hot wire. Specifically, a reaction between a tungsten precursor and a hydrogen precursor selectively forms a tungsten film, where the hydrogen precursor is excited by a tungsten hot wire.
Abstract:
A semiconductor processing apparatus (1), comprising: a substrate processing chamber (158), defining a substrate support location (156) at which a generally planar semiconductor substrate (300) is supportable; and at least one free radical source (200), including: a precursor gas source (250); an electric resistance heating filament (244); a sleeve (220) with a central sleeve axis (L), wherein said sleeve defines a reaction space (222) that accommodates the heating filament (244), and wherein said sleeve includes an inlet opening (224) via which the reaction space is fluidly connected to the precursor gas source (250), and an outlet opening (228) via which the reaction space is fluidly connected to the substrate processing chamber (158), said inlet and outlet openings (224, 228) being spaced apart along the central sleeve axis (L).