Abstract:
A power adapter includes a power converting circuit, a connecting terminal and a controller. The power converting circuit is used to convert an input voltage to an output voltage according to a control signal. The connecting terminal is connected to an electronic device to allow the output voltage outputted by the power converting circuit to charge the electronic device. The controller receives an identifying command from the electronic device when the electronic device is connected to the connecting terminal, and outputs the control signal according to the identifying command.
Abstract:
A power supply control method and a portable electronic device using the same are provided. The power supply control method includes following steps: detecting an input voltage and an input current at a power input terminal of the portable electronic device; setting a plurality of detection loads sequentially to control a power adaptor to provide a detection current as the input current for the portable electronic device respectively; calculating an equivalent input impedance of the power input terminal according to the detection current and the corresponding input voltage; calculating an actual output voltage of the power adaptor according to the equivalent input impedance, the input voltage, and the input current; and setting a work load according to the actual output voltage to control the power adaptor to provide a work current as the input current for the portable electronic device.
Abstract:
Provided is an electronic device configured to be charged with an adapter. The electronic device includes an energy storage unit, a charging unit and a switch unit. The charging unit is configured to receive a bus voltage and output a charging voltage to charge the energy storage unit. The switch unit is electrically coupled in parallel to the charging unit. When the electronic device is coupled to the adapter through a bus interface, the electronic device receives the bus voltage from the adapter, receives a communication signal from the adapter, and selectively turns on or off the switch unit according to the communication signal, and when the electronic device operates in a direct charging mode, the switch unit is turned on to form a direct charging path, to charge the energy storage unit by using the bus voltage.
Abstract:
An electronic device includes an energy storage unit, a charge pump circuit, a charging circuit, and a controller. The charge pump circuit is electrically connected to the power supply, and the power supply is configured to receive the input electrical energy. The charging circuit is electrically connected between the charge pump circuit and the energy storage unit. The controller is electrically connected with the power supply, the charge pump circuit, and the charging circuit respectively, and the controller controls the charge pump circuit and the charging circuit to switch among a plurality of charging modes according to compatibility information of the power supply.
Abstract:
An electronic device includes an energy collection circuit, a rectifier circuit, and a control unit. The energy collection circuit receives an energy signal transmitted via transmission frequency from a wireless charger base. The rectifier circuit generates a drive voltage according to the energy signal. The control unit compares the drive voltage with a reference voltage, and compares the transmission frequency with a reference frequency. When the drive voltage is less than or equals to the reference voltage, or when the transmission frequency is lower than or equals to the reference frequency, the control unit outputs position deviation information. The electronic device detects the efficiency of the wireless charging, and reminds the user whether the position of the electronic device needs to be adjusted, which ensures an efficient charging.
Abstract:
A signal analysis circuit and a signal analysis method thereof are disclosed. The signal analysis circuit includes a peak detector, a subtraction amplifying unit, and a compare unit. The peak detector obtains a peak value of a first voltage signal to generate a second voltage signal. The subtraction amplifying unit generates a compare voltage signal according to the second voltage signal, and amplifies a voltage value difference between the second voltage signal and the compare voltage signal to generate a third voltage signal. A peak-to-peak value of the third voltage signal is larger than a peak-to-peak value of the second voltage signal. The compare unit compares the voltage value of the third voltage signal and the voltage value of the compare voltage signal to generate an output voltage signal. In such a manner, a new signal analysis circuit can be realized.
Abstract:
A power supply control method and a portable electronic device using the same are provided. The power supply control method includes following steps: detecting an input voltage and an input current at a power input terminal of the portable electronic device; setting a plurality of detection loads sequentially to control a power adaptor to provide a detection current as the input current for the portable electronic device respectively; calculating an equivalent input impedance of the power input terminal according to the detection current and the corresponding input voltage; calculating an actual output voltage of the power adaptor according to the equivalent input impedance, the input voltage, and the input current; and setting a work load according to the actual output voltage to control the power adaptor to provide a work current as the input current for the portable electronic device.
Abstract:
A wireless power supply and power receiving device includes a sensor, a control module, a coil module and a rectifying and switching module. The control module determines a position or a direction of the wireless power supply and power receiving device according to the sensor, and the rectifying and switching module selectively operates in a wireless power supply mode or a wireless power receiving mode according to the position or the direction. When in the wireless power supply mode, the rectifying and switching module converts the power energy to wireless power energy to provide power to a first external device by using the coil module. When in the wireless power receiving mode, the rectifying and switching module receives wireless power energy from a second external device via the coil module.
Abstract:
A wireless power supply and power receiving device includes a sensor, a control module, a coil module and a rectifying and switching module. The control module determines a position or a direction of the wireless power supply and power receiving device according to the sensor, and the rectifying and switching module selectively operates in a wireless power supply mode or a wireless power receiving mode according to the position or the direction. When in the wireless power supply mode, the rectifying and switching module converts the power energy to wireless power energy to provide power to a first external device by using the coil module. When in the wireless power receiving mode, the rectifying and switching module receives wireless power energy from a second external device via the coil module.
Abstract:
An electronic device and a method for recognizing output power of a power supply thereof are provided. The electronic device includes a host and a power supply. The power supply is coupled to the host, receives an input power and converts the input power to a supplied power. The power supply transmits the supplied power to the host, and loads a notification signal to the supplied power in at least a time period. The acknowledge signal is a periodic clock signal, and corresponds to the output power of the power supply. The power supply loads the acknowledge signal to the supplied power in one or more time periods, and transmits the acknowledge signal to the corresponding host. The host can get the output power of the power supply via the acknowledge signal, which can improve efficiency and security of the supplied power.