Abstract:
A method for optimizing group communication services, the method comprising instantiating an adaptive homing tool as a virtual network function, the adaptive homing tool communicating with a centralized database in a multiple region telecommunications network; storing a user identification for plural group members in the database; when a service request is made by at least one group member that has moved outside of connectivity with a group home server, receiving group member location data for the plural group members in real time; assigning a group control application server to at least one group member when a group member initiates a service request; wherein the common service tool assigns the group application control server based on at least one of the priority data, group member location data, least network resources used, best path performance, shortest path performance, and quality of service.
Abstract:
Network and/or application resources can be dynamically instantiated based on service attributes and/or network capabilities. In one aspect, a customized and/or localized core slice can be selected that can deliver the requested service with target performance parameters. According to an aspect, dynamic selection, control, and/or management reporting can be provided for core network slices. Moreover, optimal core network slice selection can be performed to reduce network transport costs and efficiently deliver various services using an optimal core slice that matches a service profile being requested by an end user and/or device.
Abstract:
A method for optimizing group communication services, the method including determining a current location and an assigned home server for one or more devices associated with each of a plurality of group members, determining whether the one or more devices of the plurality of group members has moved to a visiting location, wherein the visiting location is a location outside of locations associated with the assigned home server based on the current location and assigned home server for the one or more devices, and assigning a group control application server associated with the visiting location to the to the one or more devices to serve as the assigned home server.
Abstract:
A method for optimizing group communication services, the method including determining a current location and an assigned home server for one or more devices associated with each of a plurality of group members, determining whether the one or more devices of the plurality of group members has moved to a visiting location, wherein the visiting location is a location outside of locations associated with the assigned home server based on the current location and assigned home server for the one or more devices, and assigning a group control application server associated with the visiting location to the to the one or more devices to serve as the assigned home server.
Abstract:
Network and/or application resources can be dynamically instantiated based on service attributes and/or network capabilities. In one aspect, a customized and/or localized core slice can be selected that can deliver the requested service with target performance parameters. According to an aspect, dynamic selection, control, and/or management reporting can be provided for core network slices. Moreover, optimal core network slice selection can be performed to reduce network transport costs and efficiently deliver various services using an optimal core slice that matches a service profile being requested by an end user and/or device.
Abstract:
A system that incorporates the subject disclosure may include, for example, receive a subscription from an application server where the subscription identifies a session event and/or sub-events occurring in a communication session for which the application server requests user location information, provide subscription information based on the subscription to core network nodes of the mobile communications network, receive user location information from the core network nodes responsive to a detection of a triggering event corresponding to the session event of the subscription, and provide the user location information to an IP multimedia subsystem network for delivery to the application server. Other embodiments are disclosed.
Abstract:
Network and/or application resources can be dynamically instantiated based on service attributes and/or network capabilities. In one aspect, a customized and/or localized core slice can be selected that can deliver the requested service with target performance parameters. According to an aspect, dynamic selection, control, and/or management reporting can be provided for core network slices. Moreover, optimal core network slice selection can be performed to reduce network transport costs and efficiently deliver various services using an optimal core slice that matches a service profile being requested by an end user and/or device.
Abstract:
A system that incorporates the subject disclosure may include, for example, receive a subscription from an application server where the subscription identifies a session event and/or sub-events occurring in a communication session for which the application server requests user location information, provide subscription information based on the subscription to core network nodes of the mobile communications network, receive user location information from the core network nodes responsive to a detection of a triggering event corresponding to the session event of the subscription, and provide the user location information to an IP multimedia subsystem network for delivery to the application server. Other embodiments are disclosed.
Abstract:
A system that incorporates the subject disclosure may include, for example, receive a subscription from an application server where the subscription identifies a session event and/or sub-events occurring in a communication session for which the application server requests user location information, provide subscription information based on the subscription to core network nodes of the mobile communications network, receive user location information from the core network nodes responsive to a detection of a triggering event corresponding to the session event of the subscription, and provide the user location information to an IP multimedia subsystem network for delivery to the application server. Other embodiments are disclosed.
Abstract:
Utilizing a network service interface function within a machine-to-machine common service layer is presented herein. A method can comprise determining network configuration information for network devices coupled to a set of distributed remote devices; receiving a device request directed to a remote device of the set of distributed remote devices; determining, based on the network configuration information, a network interface for facilitating performance of the device request; and sending, via the network interface, command information corresponding to the device request directed to the remote device. In an example, in response to determining that a traffic load of a communication channel associated with the remote device satisfies a defined condition with respect to an increased loading of such channel, the method can comprise sending a message to request delay of the device request if the device request has been determined to be a non-priority request.