Abstract:
An optical system assembly technique utilizes a templating system for locating optical components 200 on optical benches 150. Specifically, the template system comprises a template substrate 102 that is placed over the optical bench. The substrate 102 has at least one alignment slot 104 that is formed through the substrate. This alignment slot 104 has an alignment feature 120, against which an optical component 200 is registered. In order to improve the accuracy of the alignment of the optical component on the optical bench, the slot 104 has a reentrant, such as a smooth or step, sidewall 106 extending from the alignment feature 120 into the template substrate 102. This way, there is a single point or near single point of contact between the optical component 200 and the template 102, to thereby improve the placement precision for the optical component on the optical bench 150.
Abstract:
A system and method for fast peak finding in an optical spectrum prioritizes the information it first generates and how the information is then forwarded from the system to a host computer, for example. A spectrum detection subsystem generates a spectrum of an optical signal. An analog-to-digital converter converts the spectrum into sample data. Finally, a data processing subsystem first detects the spectral locations of peaks in the spectrum using the sample data and then uploads the peak information to a host computer before performing processing to determine the shapes of the peaks and/or noise information for the optical signal, for example. The system is thus able to quickly find some information, such as whether or not channels or carriers are present, at what frequency the carriers are operating, and the carriers' power level, and send this information to the host computer. In contrast, information concerning spectral shape or the noise floor sent later in time.
Abstract:
In optoelectronic systems, package moisture can affect stress levels in dielectric coatings on MEMS devices. Specifically, as the moisture content in these dielectric coatings changes, there are concomitant changes in the material stress. These changes in material stress can affect the operation of the overall MEMS device. Specifically, in the context of tunable filters, moisture can lead to a drift in the size of the optical resonant cavity over time as changes in material stress affect the MEMS structures. According to the invention, a getter is added to the package to absorb moisture, and thereby stabilize the operation of the optical filter, and specifically prevent uncontrolled drift in the size of its optical cavity.
Abstract:
A wavelength measurement system uses birefringent material waveplate, thereby producing a substantially sinusoidal spectral response. As a result, the responses of multiple birefringent filters can be combined to yield a filter system with a periodic frequency response that has an additive wavelength resolution that is spectrally stable. That is, the wavelength measurement system does not have regions where wavelength resolution is degraded. In one implementation, a waveplate system 112 is used, placed between two blocks of birefringent material 110 and 114. A quadrant detector 116 is used to detect the intensities of the resulting four beams.