Abstract:
A process for configuring a tunable MOEMS filter train comprises determining a spectral response of a MOEMS tunable filter. A spectral separation between different order modes, or free spectral range, is then determined for the filter. This information is then related to a mode size of a desired mode of the tunable filter. With this information, lenses for the optical train are provisioned, and then installed so that light is launched into the optical filter at the desired mode size to thereby maximize the SMSR of the filter train.
Abstract:
A detector system for a fiber optic component is insensitive to stray light. Specifically, the invention comprises a detector chip, which converts received light into an electric signal. A baffle substrate is positioned over the detector chip. This baffle substrate has a transmission port through which an optical signal is transmitted to the detector chip. As a result, light that is not directed to be transmitted through the port is blocked by the baffle substrate. In this way, it rejects stray light that may be present in the hermetic package. A detector substrate is provided on which the detector chip is mounted. This detector substrate preferably comprises electrical traces to which the detector chip is electrically connected. The detector substrate can further comprise bond pads for wire bonding to make electrical connections to the electrical traces.
Abstract:
A tunable optical filter system 10 has a reference source system 24 that is integrated with the tunable filter 22 on bench 14 and within hermetic package 12. The reference source system 24 is temporally modulated to decrease interference or crosstalk into the scan of the optical signal 64 of interest. Specifically, a system controller 100 energizes the reference source during a reference scan in which the tunable filter 22 is scanned across a spectrum of the optical reference 66. The controller 100, however, lowers, such as simply decreasing or entirely cutting, power to the reference source system 24 during a signal scan, in which the tunable filter 22 is scanned across the optical signal's spectrum. In this way, interference during the signal scan from the reference source system is reduced.
Abstract:
A system and method for fast peak finding in an optical spectrum prioritizes the information it first generates and how the information is then forwarded from the system to a host computer, for example. A spectrum detection subsystem generates a spectrum of an optical signal. An analog-to-digital converter converts the spectrum into sample data. Finally, a data processing subsystem first detects the spectral locations of peaks in the spectrum using the sample data and then uploads the peak information to a host computer before performing processing to determine the shapes of the peaks and/or noise information for the optical signal, for example. The system is thus able to quickly find some information, such as whether or not channels or carriers are present, at what frequency the carriers are operating, and the carriers' power level, and send this information to the host computer. In contrast, information concerning spectral shape or the noise floor sent later in time.
Abstract:
In optoelectronic systems, package moisture can affect stress levels in dielectric coatings on MEMS devices. Specifically, as the moisture content in these dielectric coatings changes, there are concomitant changes in the material stress. These changes in material stress can affect the operation of the overall MEMS device. Specifically, in the context of tunable filters, moisture can lead to a drift in the size of the optical resonant cavity over time as changes in material stress affect the MEMS structures. According to the invention, a getter is added to the package to absorb moisture, and thereby stabilize the operation of the optical filter, and specifically prevent uncontrolled drift in the size of its optical cavity.