摘要:
A UE may store received samples of a wireless signal at cx1 to reduce memory usage, but then may correlate those samples with cx2 timing hypotheses to improve performance. The received sequence is resampled at cx2 instead of cx1. The UE still performs the correlation of the cx2 timing hypotheses for the performance gain, but the reference waveform is resampled with cx2 time offset. A Fast Fourier Transform (FFT) may be taken of the received and reference waveforms. In the frequency domain, resampling may be performed by multiplying the FFT of the reference waveform by a phase ramp—a pointwise multiplication in the frequency domain with a constant magnitude sequence whose phase varies linearly.
摘要:
Timing acquisition may be performed without typical correlation computations by determining a power of a received signal at certain points in time and using the determined power to identify gaps in the received signal. By determining gaps in the received signal, frame timing may be estimated, particularly in time-division networks where the location of guard periods within a frame is known. Gap detection may thus be used for timing acquisition.
摘要:
Timing acquisition may be performed without typical correlation computations by determining a power of a received signal at certain points in time and using the determined power to identify gaps in the received signal. By determining gaps in the received signal, frame timing may be estimated, particularly in time-division networks where the location of guard periods within a frame is known. Gap detection may thus be used for timing acquisition.
摘要:
Methods and apparatus for reducing transmit emissions are described herein. The transmit out of band emissions in an adjacent band can be reduced while complying with existing wireless communication standards through utilization of one or more of reduced transmit bandwidth, transmit operating band offset, and channel index remapping. The transceiver can support a receive operating band substantially adjacent to a band edge. The transmit operating band can be offset from an adjacent frequency band, and can use a narrower operating band than is supported by the receiver. The transmit baseband signal can have a reduced bandwidth to reduce the amount of noise. The frequency offset can introduce a larger transition band between the transmit operating band edges and the adjacent frequency band of interest. The transceiver can remap channel assignments to compensate for the frequency offset such that the frequency offset introduced in the transmitter is transparent to channel allocation.
摘要:
A wireless broadcast system that collects content for distribution over a wireless communication network. The content stream is encapsulated into a stream of transport packets for broadcast over the wireless communication link. The stream of transport packets are simultaneously broadcast as part of an identical signal from a plurality of synchronized transmitters in a single frequency network. A receiver acquires the broadcast signal and synchronizes to the signal. Once the receiver is synchronized to one of the transmitters in the single frequency network, the receiver can receive signals from any, or multiple, of the transmitters in the network without re-synchronizing.
摘要:
Methods and apparatus are described for mitigating intercell interference in wireless communication systems utilizing substantially the same operating frequency band across multiple neighboring coverage areas. The operating frequency band may be shared across multiple neighboring or otherwise adjacent cells, such as in a frequency reuse one configuration. The wireless communication system can synchronize one or more resource allocation regions or zones across the multiple base stations, and can coordinate a permutation type within each resource allocation zone. The base stations can coordinate a pilot configuration in each of a plurality of coordinated resource allocation regions. Subscriber stations can be assigned resources in a coordinated resource allocation region based on interference levels. A subscriber station can determine a channel estimate for each of multiple base stations in the coordinated resource allocation region to mitigate interference.
摘要:
Methods and apparatus for reducing transmit emissions are described herein. The transmit out of band emissions in an adjacent band can be reduced while complying with existing wireless communication standards through utilization of one or more of reduced transmit bandwidth, transmit operating band offset, and channel index remapping. The transceiver can support a receive operating band substantially adjacent to a band edge. The transmit operating band can be offset from an adjacent frequency band, and can use a narrower operating band than is supported by the receiver. The transmit baseband signal can have a reduced bandwidth to reduce the amount of noise. The frequency offset can introduce a larger transition band between the transmit operating band edges and the adjacent frequency band of interest. The transceiver can remap channel assignments to compensate for the frequency offset such that the frequency offset introduced in the transmitter is transparent to channel allocation.
摘要:
Methods and apparatus are provided for operating in a first RAN at a working frequency, determining a priority of measurement tasks enabled by the first RAN, and dynamically scheduling the tasks according to the priority. For certain aspects, the first RAN may be a TD-SCDMA network. The measurement tasks are intended to measure at least one parameter of a serving cell in the first RAN on a primary frequency, at least one cell in the first RAN on at least one frequency other than the primary frequency, one or more cells in at least one RAN other than the first RAN (e.g., a GSM network) or any combination thereof. This dynamic assignment allows the UE to make scheduling decisions on which frequencies and RANs to measure, as well as how often these frequencies and RANs are measured, thereby providing for more efficient use of idle slots over conventional haphazard scheduling.
摘要:
A configuration for downlink signals in a wireless communication system, methods of configuring the downlink signals, apparatus for generating the downlink signals, and apparatus for receiving and processing the downlink signals are described herein. Downlink signals in a wireless communication system are reconfigured in series of frames, with each frame carrying a preamble that provides fast cell search and system acquisition. In particular, the preamble includes a primary preamble and a secondary preamble, where the primary preamble is common to all sectors in a base station and all base stations in a system and the secondary preamble is effectively unique to each base station, and may be further distinguished based on a sector basis. In addition, pilot signals are aligned with base stations to occur at the same time within a frame and the PN sequence values of the pilot signals are based on a cell identification an antenna identification, thereby enabling prediction of pilots transmitted by interferers or neighboring base stations from acquisition of secondary preambles. Also, the pilot bits are selectively assigned from a center of an operating band outward. Due to the pilot placement and pilot modulation, the scheme enables interference mitigation and channel estimation without knowing the frequency bandwidth, which is especially advantageous in broadcast channel systems.
摘要:
Enhanced frame preambles facilitate co-channel co-existence in a wireless communication environment by having at least one preamble characteristic that connotes channel-sharing information regarding the wireless communication environment. In an exemplary embodiment, a downlink subframe is received in one or more wireless communication signals in a wireless communication environment. A preamble is detected in the downlink subframe, and at least one characteristic of the preamble is ascertained. Channel-sharing information for the wireless communication environment is determined based upon the at least one characteristic of the preamble. In another exemplary embodiment, a channel is scanned to detect secondary preambles being transmitted on the channel. A current preamble configuration, including a permutation of preamble location and preamble content corresponding to the secondary preambles, is determined, which connote channel-sharing information. A next available preamble location may be adopted based on the current preamble configuration.