Abstract:
Apparatuses and methods for joining one or more tubing sections together to form a tubular catheter device, for shaping one or more tubular sections of a catheter device, and/or for fusing elements (e.g., a radiopaque marker) onto a portion of the catheter. Each section of the catheter is typically fabricated independently from the other sections. Subsequently, the separate sections are fused together to form the catheter. The methods described herein allow the various sections of the catheter to be fitted together for fabrication without the use of heat-shrink tubing. The fitted parts are clamped in a die or mold at a temperature at or near room temperature; the die is then rapidly heated to fuse the parts, rapidly cooled back down to a temperature at or about room temperature, and removed from the die.
Abstract:
Apparatuses and methods for joining one or more tubing sections together to form a tubular catheter device, for shaping one or more tubular sections of a catheter device, and/or for fusing elements (e.g., a radiopaque marker) onto a portion of the catheter. Each section of the catheter is typically fabricated independently from the other sections. Subsequently, the separate sections are fused together to form the catheter. The methods described herein allow the various sections of the catheter to be fitted together for fabrication without the use of heat-shrink tubing. The fitted parts are clamped in a die or mold at a temperature at or near room temperature; the die is then rapidly heated to fuse the parts, rapidly cooled back down to a temperature at or about room temperature, and removed from the die.
Abstract:
Methods for fabricating a polymeric stent with improved fracture toughness including radial expansion of a polymer tube and fabricating a stent from the expanded tube are disclosed. The polymer tube is disposed within a mold and may be heated with radiation. The heated tube radially expands within the mold.