摘要:
Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
摘要:
Bioresorbable polymer vascular scaffolds made of combinations of polylactide and polycaprolactone having a high molecular weight polymer, thin struts in a selected range and sufficient radial strength to support a vessel upon deployment. The scaffolds have degradation behavior of molecular weight, radial strength, and mass that are conducive to healing of a vessel including providing patency to a vessel, reduction of radial strength, breaking up, and resorbing to allow return of the vessel to a natural state.
摘要:
Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
摘要:
A polymer tube is processed using a solid phase process for improving mechanical characteristics of the tube, including radial strength and stiffness. The tube is made into a scaffold possessing improved mechanical and use characteristics, such as a reduced crimped profile and improved deliverability.
摘要:
Bioresorbable polymer vascular scaffolds made of combinations of polylactide and polycaprolactone having a high molecular weight polymer, thin struts in a selected range and sufficient radial strength to support a vessel upon deployment. The scaffolds have degradation behavior of molecular weight, radial strength, and mass that are conducive to healing of a vessel including providing patency to a vessel, reduction of radial strength, breaking up, and resorbing to allow return of the vessel to a natural state.
摘要:
Methods of treating a diseased blood vessel exhibiting stenosis with a bioabsorable stent are disclosed. The implanted stent supports the section of the vessel at an increased diameter for a period of time to allow the vessel to heal. The stent loses radial strength sufficient to support the section of the vessel in less than 6 months after implantation, loses mechanical integrity, and then erodes away from the section. The biodegradable stent results in changes in properties of plaque with time as the stent degrades. The time-dependent properties include the luminal area of the plaque and plaque geometric morphology parameters.
摘要:
Methods of fabricating a stent are disclosed including forming a primer layer on a surface of the scaffold including a first polylactide polymer. The primer layer includes a second polylactide polymer and is free of a therapeutic agent. The scaffold with the primer layer is thermally treated to condition the scaffold. A therapeutic layer is formed over the primer layer and the therapeutic layer includes the second polylactide polymer and a drug. The scaffold is crimped and the primer layer improves adhesion of the therapeutic layer to the scaffold and reduces or prevents damage to the therapeutic layer during crimping.
摘要:
Bioresorbable polymer vascular scaffolds made of combinations of polylactide and polycaprolactone having a high molecular weight polymer, thin struts in a selected range and sufficient radial strength to support a vessel upon deployment. The scaffolds have degradation behavior of molecular weight, radial strength, and mass that are conducive to healing of a vessel including providing patency to a vessel, reduction of radial strength, breaking up, and resorbing to allow return of the vessel to a natural state.
摘要:
Methods are disclosed including thermally processing a scaffold to increase the radial strength of the scaffold when the scaffold is deployed from a crimped state to a deployed state such as a nominal deployment diameter. The thermal processing may further maintain or increase the expansion capability of the scaffold when expanded beyond the nominal diameter.
摘要:
Methods for fabricating a polymeric stent with improved fracture toughness including radial expansion of a polymer tube and fabricating a stent from the expanded tube are disclosed. The polymer tube is disposed within a mold and may be heated with radiation. The heated tube radially expands within the mold.