Nanowire-based Hydrodesulfurization Catalysts for Hydrocarbon Fuels

    公开(公告)号:US20180187094A1

    公开(公告)日:2018-07-05

    申请号:US15859288

    申请日:2017-12-29

    Abstract: The present development is a metal particle coated nanowire catalyst for use in the hydrodesulfurization of fuels and a process for the production of the catalyst. The catalyst comprises titanium(IV) oxide nanowires wherein the nanowires are produced by exposure of a TiO2—KOH paste to microwave radiation. Metal particles selected from the group consisting of molybdenum, nickel, cobalt, tungsten, or a combination thereof, are impregnated on the metal oxide nanowire surface. The metal impregnated nanowires are sulfided to produce catalytically-active metal particles on the surface of the nanowires The catalysts of the present invention are intended for use in the removal of thiophenic sulfur from liquid fuels through a hydrodesulfurization (HDS) process in a fixed bed reactor. The presence of nanowires improves the HDS activity and reduces the sintering effect, therefore, the sulfur removal efficiency increases.

    Plasma assisted distributed chemical production

    公开(公告)号:US11591226B1

    公开(公告)日:2023-02-28

    申请号:US17411023

    申请日:2021-08-24

    Abstract: The present development is a process to produce commodity chemicals such as methanol and syngas using an integrated plasma catalysis technology. The method comprises providing a fixed or fluidized bed reactor having a microwave plasma flame and a catalyst bed with a catalyst, wherein the catalyst is an alloyed bimetallic nanowire. In the process, the plasma flame fluidizes the catalyst thereby producing a more effective catalyst than the non-fluidized catalyst. It is anticipated that the reactor can have a throughput capacity of up to 30 Lpm/kW and can be effective for the conversion of CO2, CH4, air, water, and combinations thereof, through reactions such as pure CO2 splitting, reverse water gas shift (RWGS) for CO production, methanol synthesis, and plasma reforming of methane, thereby making a system that would be attractive for small GTL units.

Patent Agency Ranking