Abstract:
An ion implantation method is disclosed that includes a step of carrying out a built-in early check to ensure accurate and correct operation parameters are employed when the setup operation is started. By applying built-in check processes, the repeatability of ion beam setup processes can be enhanced. The ion beam setup method includes a formula-based searching algorithm to accurately and rapidly determines the atomic mass unit (AMU) using a feedback data other than the beam current. The same formula is used to check for subsystems consistency and reliability to ensure accuracy of the ion beam being set up. The searching algorithm further implements a peaking algorithm to avoid the common pitfalls of misinterpretation of data and achieve an accurate, reliable, and fast tuning with the help of nullTrusty Recipesnull as initial conditions and nullLimits Parametersnull as constraints. In order to enhance and facilitate the human-system interactions, graphic user interface (GUI) is used to minimize human errors and to monitor and to rapidly react to abnormal operation conditions. By reducing the ion beam setup time, it is feasible to shutoff the ion source generation and deflection subsystem during a wafer exchange period. The shutoff operation enables the cost reductions by reducing wastes of materials; manpower and other system resources while increase the overall system productivities.
Abstract:
This invention discloses an ion implantation apparatus that has an ion source and an ion extraction means for extracting an ion beam therefrom. The ion implantation apparatus further includes an ion beam sweeping-and-deflecting means disposed immediately next to the ion extraction means. The ion implantation apparatus further includes a magnetic analyzer for guiding the ion beam passed through the deflecting-and-sweeping means. The mass analyzer is also used for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. The sweeping-and-deflecting means is applied to deflect the ion beam to project through the magnetic mass analyzer and the mass slit for sweeping the ion beam over a surface of the substrate to carry out an ion implantation. In a preferred embodiment, the ion implantation apparatus further includes a plasma electron flood system disposed between the mass slit and the substrate for projecting a plurality of electrons to the ion beam for preventing a space-charge and beam dispersion. In another preferred embodiment, the ion beam extraction and projecting system of this invention further includes a divergent ion-beam extracting optics for extracting an ion beam with a small divergent angle for projecting and diverging the ion beam as the ion beam is projected toward the target surface.