Abstract:
A lever mechanism facilitates coupling of a sliding board and a connector. A sliding board is partially enclosed by a sliding board enclosure, such that the sliding board is slidable relative to the enclosure. A pair of pivot levers is disposed between the sliding board and the enclosure. Each pivot lever is connected at a proximal end to the enclosure and at a pivot point to the sliding board. A distal end of the pivot lever is removably engageable with a second circuit board. The lever mechanism translates a pushing force on the enclosure to a pulling force on the sliding board, aligning and eventually coupling the sliding board with the connector.
Abstract:
A cluster computer server is configured after a system reset or other configuration event. Each node of a fabric of the cluster compute server is employed, for purposes of configuration, as a cell in a cellular automaton, thereby obviating the need for a special configuration network to communicate configuration information from a central management unit. Instead, the nodes communicate configuration information using the same fabric interconnect that is used to communicate messages during normal execution of software services at the nodes.
Abstract:
An orthogonal coupling mechanism includes a threaded rod, a pair of travelers engaging the threaded rod, and an actuator. The actuator is disposed on the threaded rod, such that the actuator translates a first axial force along the axis of the threaded rod into a rotational movement of the threaded rod about its axis. The rotational movement created by the actuator causes the pair of travelers to travel along the axis of the threaded rod, moving a sliding board into engagement with a first connector in a direction orthogonal to a direction of the first axial force.
Abstract:
A server system includes an array of server cells. Some or all of the server cells include a set of at least three side panels forming an enclosure and a compute component comprising a processor core. At least one side panel of each server cell is removably mechanically coupled and removably electrically coupled to a facing side panel of an adjacent server cell. The enclosure may form a triangular prism enclosure, a cuboid enclosure, a hexagonal prism enclosure, etc. The enclosure can be formed from a rigid flex printed circuit board (PCB) assembly, whereby the side panels are implemented as rigid PCB sections that are interconnected via flexible PCB sections, with the flexible PCB sections forming corners between the rigid PCB sections when the rigid-flex PCB assembly is folded into the enclosure shape. The compute component and other circuit components are disposed at the interior surfaces of the rigid PCB sections.
Abstract:
An orthogonal coupling mechanism includes a threaded rod, a pair of travelers engaging the threaded rod, and an actuator. The actuator is disposed on the threaded rod, such that the actuator translates a first axial force along the axis of the threaded rod into a rotational movement of the threaded rod about its axis. The rotational movement created by the actuator causes the pair of travelers to travel along the axis of the threaded rod, moving a sliding board into engagement with a first connector in a direction orthogonal to a direction of the first axial force.
Abstract:
A cluster computer server is configured after a system reset or other configuration event. Each node of a fabric of the cluster compute server is employed, for purposes of configuration, as a cell in a cellular automaton, thereby obviating the need for a special configuration network to communicate configuration information from a central management unit. Instead, the nodes communicate configuration information using the same fabric interconnect that is used to communicate messages during normal execution of software services at the nodes.
Abstract:
A server system includes a plurality of stacked modular computing structures. Each modular computing structure includes a circuit board comprising a computing resource, an air-fluid heat exchange structure comprising a first set of pipe segments, and a cold plate structure attached to a second set of pipe segments of the modular computing structure. The first set of pipe segments of each modular computing structure interfaces with the first set of pipe segments of at least one adjacent modular computing structure to form a corresponding section of a first fluid circulation loop. The second set of pipe segments of each modular computing structure interfaces with the second set of pipe segments of at least one adjacent modular computing structure to form a corresponding section of a second fluid circulation loop.
Abstract:
A server system includes a plurality of stacked modular computing structures. Each modular computing structure includes a circuit board comprising a computing resource, an air-fluid heat exchange structure comprising a first set of pipe segments, and a cold plate structure attached to a second set of pipe segments of the modular computing structure. The first set of pipe segments of each modular computing structure interfaces with the first set of pipe segments of at least one adjacent modular computing structure to form a corresponding section of a first fluid circulation loop. The second set of pipe segments of each modular computing structure interfaces with the second set of pipe segments of at least one adjacent modular computing structure to form a corresponding section of a second fluid circulation loop.
Abstract:
A lever mechanism facilitates coupling of a sliding board and a connector. A sliding board is partially enclosed by a sliding board enclosure, such that the sliding board is slidable relative to the enclosure. A pair of pivot levers is disposed between the sliding board and the enclosure. Each pivot lever is connected at a proximal end to the enclosure and at a pivot point to the sliding board. A distal end of the pivot lever is removably engageable with a second circuit board. The lever mechanism translates a pushing force on the enclosure to a pulling force on the sliding board, aligning and eventually coupling the sliding board with the connector.
Abstract:
A system and method for optimizing a flow of data traffic are provided. A plurality of tori are connected in a parallel tori interconnect. Each torus includes a plurality of nodes. The nodes in the torus are interconnected using links. A host in the network is connected to a subset of nodes where nodes in the subset are associated with different tori. The host transmits the packets to the parallel tori interconnect by selecting a node the subset of nodes. The packets are transmitted using links between from the node to the plurality of nodes in the torus, but not between the plurality of tori.