Abstract:
For each access request received at a shared cache of the data processing device, a memory access pattern (MAP) monitor predicts which of the memory banks, and corresponding row buffers, would be accessed by the access request if the requesting thread were the only thread executing at the data processing device. By recording predicted accesses over time for a number of access requests, the MAP monitor develops a pattern of predicted memory accesses by executing threads. The pattern can be employed to assign resources at the shared cache, thereby managing memory more efficiently.
Abstract:
A data processing device is provided that employs multiple translation look-aside buffers (TLBs) associated with respective processors that are configured to store selected address translations of a page table of a memory shared by the processors. The processing device is configured such that when an address translation is requested by a processor and is not found in the TLB associated with that processor, another TLB is probed for the requested address translation. The probe across to the other TLB may occur in advance of a walk of the page table for the requested address or alternatively a walk can be initiated concurrently with the probe. Where the probe successfully finds the requested address translation, the page table walk can be avoided or discontinued.
Abstract:
For each access request received at a shared cache of the data processing device, a memory access pattern (MAP) monitor predicts which of the memory banks, and corresponding row buffers, would be accessed by the access request if the requesting thread were the only thread executing at the data processing device. By recording predicted accesses over time for a number of access requests, the MAP monitor develops a pattern of predicted memory accesses by executing threads. The pattern can be employed to assign resources at the shared cache, thereby managing memory more efficiently.
Abstract:
A data processing device is provided that employs multiple translation look-aside buffers (TLBs) associated with respective processors that are configured to store selected address translations of a page table of a memory shared by the processors. The processing device is configured such that when an address translation is requested by a processor and is not found in the TLB associated with that processor, another TLB is probed for the requested address translation. The probe across to the other TLB may occur in advance of a walk of the page table for the requested address or alternatively a walk can be initiated concurrently with the probe. Where the probe successfully finds the requested address translation, the page table walk can be avoided or discontinued.