Abstract:
Techniques for executing workgroups are provided. The techniques include executing, for a first workgroup of a first kernel dispatch, a workgroup dependency instruction that includes an indication to prioritize execution of a second workgroup of a second kernel dispatch, and in response to the workgroup dependency instruction, dispatching the second workgroup of the second kernel dispatch prior to dispatching a third workgroup of the second kernel dispatch, wherein no workgroup dependency instruction including an indication to prioritize execution of the third workgroup has been executed.
Abstract:
A processing unit decomposes a matrix for partial processing at a processor-in-memory (PIM) device. The processing unit receives a matrix to be used as an operand in an arithmetic operation (e.g., a matrix multiplication operation). In response, the processing unit decomposes the matrix into two component matrices: a sparse component matrix and a dense component matrix. The processing unit itself performs the arithmetic operation with the dense component matrix, but sends the sparse component matrix to the PIM device for execution of the arithmetic operation. The processing unit thereby offloads at least some of the processing overhead to the PIM device, improving overall efficiency of the processing system.
Abstract:
A technique for determining whether a register value should be written to an operand cache or whether the register value should remain in and not be evicted from the operand cache is provided. The technique includes executing an instruction that accesses an operand that comprises the register value, performing one or both of a lookahead technique and a prediction technique to determine whether the register value should be written to an operand cache or whether the register value should remain in and not be evicted from the operand cache, and based on the determining, updating the operand cache.
Abstract:
Techniques for executing workgroups are provided. The techniques include executing, for a first workgroup of a first kernel dispatch, a workgroup dependency instruction that includes an indication to prioritize execution of a second workgroup of a second kernel dispatch, and in response to the workgroup dependency instruction, dispatching the second workgroup of the second kernel dispatch prior to dispatching a third workgroup of the second kernel dispatch, wherein no workgroup dependency instruction including an indication to prioritize execution of the third workgroup has been executed.
Abstract:
Methods, devices, and systems for managing performance of a processor having multiple compute units. An effective number of the multiple compute units may be determined to designate as having priority. On a condition that the effective number is nonzero, the effective number of the multiple compute units may each be designated as a priority compute unit. Priority compute units may have access to a shared cache whereas non-priority compute units may not. Workgroups may be preferentially dispatched to priority compute units. Memory access requests from priority compute units may be served ahead of requests from non-priority compute units.
Abstract:
A system and method for efficient management of network traffic management of highly data parallel computing. A processing node includes one or more processors capable of generating network messages. A network interface is used to receive and send network messages across a network. The processing node reduces at least one of a number or a storage size of the original network messages into one or more new network messages. The new network messages are sent to the network interface to send across the network.
Abstract:
A method, a non-transitory computer readable medium, and a processor for repacking dynamic wavefronts during program code execution on a processing unit, each dynamic wavefront including multiple threads are presented. If a branch instruction is detected, a determination is made whether all wavefronts following a same control path in the program code have reached a compaction point, which is the branch instruction. If no branch instruction is detected in executing the program code, a determination is made whether all wavefronts following the same control path have reached a reconvergence point, which is a beginning of a program code segment to be executed by both a taken branch and a not taken branch from a previous branch instruction. The dynamic wavefronts are repacked with all threads that follow the same control path, if all wavefronts following the same control path have reached the branch instruction or the reconvergence point.
Abstract:
The described embodiments comprise a selection mechanism that selects a resource from a set of resources in a computing device for performing an operation. In some embodiments, the selection mechanism performs a lookup in a table selected from a set of tables to identify a resource from the set of resources. When the resource is not available for performing the operation and until another resource is selected for performing the operation, the selection mechanism identifies a next resource in the table and selects the next resource for performing the operation when the next resource is available for performing the operation.
Abstract:
The described embodiments comprise a selection mechanism that selects a resource from a set of resources in a computing device for performing an operation. In some embodiments, the selection mechanism is configured to perform a lookup in a table selected from a set of tables to identify a resource from the set of resources. When the identified resource is not available for performing the operation and until a resource is selected for performing the operation, the selection mechanism is configured to identify a next resource in the table and select the next resource for performing the operation when the next resource is available for performing the operation.
Abstract:
A data processing device is provided that facilitates cache coherence policies. In one embodiment, a data processing device utilizes invalidation tags in connection with a cache that is associated with a processing engine. In some embodiments, the cache is configured to store a plurality of cache entries where each cache entry includes a cache line configured to store data and a corresponding cache tag configured to store address information associated with data stored in the cache line. Such address information includes invalidation flags with respect to addresses stored in the cache tags. Each cache tag is associated with an invalidation tag configured to store information related to invalidation commands of addresses stored in the cache tag. In such embodiment, the cache is configured to set invalidation flags of cache tags based upon information stored in respective invalidation tags.