Abstract:
Disclosed is a method for treating a liver disease in a subject comprising administering a Tjp1 inhibitor to the subject. Also disclosed are a kit and a nucleic acid encoding a Tjp1 inhibitor.
Abstract:
The present invention relates to a method for determining or making of a prognosis if a patient has cancer or is at an increased risk of having cancer, the method comprising testing for the presence of one or more cancer-associated fusion genes, or proteins derived thereof, in a sample obtained from a patient. More specifically, the present invention relates to fusion genes CLEC16A-EMP2, SNX2-PRDM6, MLL3-PRKAG2, DUS2L-PSKH1 and CLDN18-ARHGAP26 in gastric cancer. Use of the method and a kit when used in the method are also provided.
Abstract:
There is provided a method of identifying candidate agents capable of modulating interaction between a first polypeptide and a second polypeptide, wherein the first polypeptide is ZO-2/TJP2 or a functional variant thereof and the second polypeptide is a Snail zinc finger transcription factor family member or a functional variant thereof.
Abstract:
There is provided a method of identifying candidate agents capable of modulating interaction between a first polypeptide and a second polypeptide, wherein the first polypeptide is ZO-2/TJP2 or a functional variant thereof and the second polypeptide is a Snail zinc finger transcription factor family member or a functional variant thereof.
Abstract:
The invention is a method for treating a heart disease, in particular acute myocardial infarction (AMI) in a subject comprising the step of administering to the subject a Tjp1 inhibitor, wherein administration of said Tjp1 inhibitor promotes cardiomyocyte proliferation. The invention further includes use of Tjp1 inhibitor in the manufacture of a medicament for a heart disease, a patch, and a nucleic acid encoding a Tjp1 inhibitor. In a particular embodiment, the Tjp1 inhibitor is a nucleic acid, i.e. an siRNA or shRNA of Tjp1. The invention also includes administration of said Tjp1 inhibitor in combination with Neuregulin-1 (NRG1), Fibroblast growth factor (FGF), Vascular endothelial growth factor (VEGF) or Follistatin-like 1 (Fst1) and wherein said inhibitor is delivered in an adeno-associated virus of serotype 9 (AAV 9).
Abstract:
The present invention relates to a novel gene encoding a protein termed voltage gated calcium channels β subunit anchoring regulator protein (VDCC BARP) or a peptide fragments thereof. The present invention also relates to the use of VDCC BARP in modulation of voltage gated calcium channels via altering the concentration of VDCC BARP or a peptide fragments thereof.
Abstract:
There is provided a material comprising a multi-block thermogelling polymer, said multi-block thermogelling polymer comprising a hydrophilic polymer block; a thermosensitive polymer block; and a hydrophobic polymer block, wherein the hydrophilic polymer block, the thermosensitive polymer block and the hydrophobic polymer block are chemically coupled together by at least one of urethane/carbamate, carbonate, ester linkages or combinations thereof, and wherein the material is suitable for use as a vitreous substitute. Also provided are a method of preparing said material and a synthetic vitreous humour or part thereof comprising said material.