Abstract:
An ion optic assembly includes a set of conductive rods, a first insulator, and a second insulator. The rods are inserted into through-holes of the first insulator, which are arranged about an axis along which the rods are elongated. The rods are then inserted through a bore of the second insulator and become located in notches of the bore, which are arranged about the axis. Accordingly, the first insulator positions one end of the rods at a first distance from the axis, and the second insulator positions the other end of the rods at a second distance from the axis, which may equal to or different from the first distance. The rods contact, and may be spring-biased against, the notches. The assembly may include an electrical contact with fingers spring-biased into contact with the rods. Each insulator may include both through-holes and notches for additional rods.
Abstract:
A quadrupole rod assembly includes a plurality of electrically conductive rods, electrically insulating rings coaxially surrounding the rods, and clamping systems. The rods are arranged about a longitudinal axis. The rods and rings have respective surfaces oriented in a transverse plane orthogonal to the longitudinal axis, which surfaces interface with respective surfaces of the clamping systems that are also oriented in the transverse plane.
Abstract:
An ion guide generates a first RF field of Nth order where N is an integer equal to or greater than 2, and a second RF field of 2Nth order superimposed on the first RF field. The first and second RF fields may be generated by respective first and second sets of electrodes. Another ion guide may include a converging entrance section followed by an exit section. The converging section may have a hyperbolic profile. A hyperbolic profile may be presented by electrodes having a twisted configuration relative to an ion guide axis.
Abstract:
An ion guide generates a first RF field of Nth order where N is an integer equal to or greater than 2, and a second RF field of 2Nth order superimposed on the first RF field. The first and second RF fields may be generated by respective first and second sets of electrodes. Another ion guide may include a converging entrance section followed by an exit section. The converging section may have a hyperbolic profile. A hyperbolic profile may be presented by electrodes having a twisted configuration relative to an ion guide axis.
Abstract:
The invention relates to a vacuum system, comprising a vacuum pump, preferably turbomolecular pump, and at least one vacuum chamber, wherein the vacuum pump comprises: at least a first and a second inlet and a common outlet; at least a first and a second pumping stage, each pumping stage comprising at least one rotor element being arranged on a common rotor shaft, wherein the first inlet is connected to an upstream end of the first pumping stage and the second inlet is connected to an upstream end of the second pumping stage; a direction element for preventing a gas flow from a downstream end of the first pumping stage to the second inlet; a conduit having a conduit inlet and a conduit outlet, wherein the conduit inlet is connected to the downstream end of the first pumping stage and the conduit outlet is connected to a location downstream of the second pumping stage; wherein the first inlet and the second inlet of the pump are connected to the same vacuum chamber.
Abstract:
An ion optic assembly includes a set of conductive rods, a first insulator, and a second insulator. The rods are inserted into through-holes of the first insulator, which are arranged about an axis along which the rods are elongated. The rods are then inserted through a bore of the second insulator and become located in notches of the bore, which are arranged about the axis. Accordingly, the first insulator positions one end of the rods at a first distance from the axis, and the second insulator positions the other end of the rods at a second distance from the axis, which may equal to or different from the first distance. The rods contact, and may be spring-biased against, the notches. The assembly may include an electrical contact with fingers spring-biased into contact with the rods. Each insulator may include both through-holes and notches for additional rods.
Abstract:
A quadrupole rod assembly includes a plurality of electrically conductive rods, electrically insulating rings coaxially surrounding the rods, and clamping systems. The rods are arranged about a longitudinal axis. The rods and rings have respective surfaces oriented in a transverse plane orthogonal to the longitudinal axis, which surfaces interface with respective surfaces of the clamping systems that are also oriented in the transverse plane.
Abstract:
A field terminator includes a plurality of electrode plates positioned around a guide axis at a radial distance therefrom. The plates generate a quadrupole DC field such that a polarity on each plate is opposite to a polarity on the plates adjacent thereto. The plates may be positioned at an axial end of a quadrupole ion guide such as a mass filter. In addition to an RF field, the ion guide may generate a quadrupole DC field. The DC field of the plates may be opposite in polarity to that of the ion guide.
Abstract:
An ion detection system for detecting ions whose velocity varies during an operating cycle. The ion detection system includes a dynode electron multiplier (e.g., a microchannel plate (MCP)) having a bias voltage input, and a bias voltage source to apply a bias voltage to the bias voltage input of the dynode electron multiplier. With a fixed bias voltage applied to its bias voltage input, the dynode electron multiplier has a gain dependent on the velocity of ions incident thereon. The bias voltage applied by the bias voltage source to the bias voltage input of the dynode electron multiplier varies during the operating cycle to reduce the dependence of the gain of the dynode electron multiplier on the velocity of the ions incident thereon.