Abstract:
Disclosed is a sample dispatcher configured for individually introducing a plurality of portions of one or more sample fluids into a flow of a mobile phase of a separation system configured for separating compounds of the sample fluids. The separation system comprises a mobile phase drive configured for driving the mobile phase through a separation unit configured for separating compounds of the sample fluids in the mobile phase. The sample dispatcher comprises a plurality of sample reservoirs, each configured for receiving and temporarily storing a respective sample fluid portion or at least a part thereof. The sample dispatcher is configured for selectively coupling one of the plurality of sample reservoirs between the mobile phase drive and the separation unit, and further for coupling at least two of the plurality of sample reservoirs in parallel between the mobile phase drive and the separation unit.
Abstract:
A sample separation apparatus (200) for separating a fluidic sample, the sample separation apparatus (200) comprising a first separation unit (204) for separating the fluidic sample, a first fluid drive (202) configured for conducting the fluidic sample to be separated through the first separation unit (204), a second separation unit (208), arranged downstream of the first separation unit (204), for further separating the fluidic sample after treatment by the first separation unit (204), a second fluid drive (206) configured for at least partially conducting the fluidic sample, after treatment by the first separation unit (204), through the second separation unit (208), and a fluidic valve (218) having fluidic interfaces (222, 224, 226, 228) fluidically coupled to the first fluid drive (202) and the second fluid drive (206) and being switchable for performing the separation of the fluidic sample, wherein the sample separation apparatus (200) is configured for adjusting a pressure at a predefined position to a predefined value, wherein the predefined position is in a fluidic path between an outlet (270) of the first separation unit (204) and an inlet (272) of the second separation unit (208) or in fluid communication with this fluidic path.
Abstract:
A sample dispatcher is disclosed and is configured for individually introducing a plurality of portions of one or more sample fluids into a flow of a mobile phase of a liquid separation system. The liquid separation system is configured for separating compounds of the sample fluids and comprises a mobile phase drive configured for driving the mobile phase through a separation unit configured for separating compounds of the sample fluids in the mobile phase. The sample dispatcher comprises one or more sample reservoirs, each configured for receiving and temporarily storing a respective sample fluid portion or at least a part thereof, and a bypass channel.
Abstract:
A fluid supply system (150) adapted for metering two or more fluids in controlled proportions and for supplying a resultant mixture, the fluid supply system (150) comprising a plurality of solvent supply lines (104 to 107), each fluidically connected with a fluid source (100 to 103) providing a respective fluid, a pumping unit (110) comprising a reciprocating element (115) adapted for intaking fluid supplied at an inlet of the pumping unit (110) and for supplying the pressurized fluid at an outlet of the pumping unit (110), wherein the pumping unit (110) is adapted for taking in fluids from selected solvent supply lines (104 to 107) and for supplying a pressurized mixture of the fluids at its outlet, a proportioning valve (108) interposed between the solvent supply lines (104 to 107) and the inlet of the pumping unit (110), the proportioning valve (108) adapted for modulating solvent composition by sequentially coupling selected ones of the solvent supply lines (104 to 107) with the inlet of the pumping unit (110), and a longitudinal mixing unit (152) adapted for mixing longitudinally subsequent sections of the fluids so as to modify their succession in flow direction.