摘要:
A binder material activating device to activate a binder material on a fibrous substrate, the binder material activating device including a heat exposing device to expose the fibrous substrate with the binder material to heat. The heat exposing device includes a non-focused light source to provide a non-focused light beam and an optics device to be arranged in between the fibrous substrate to be exposed to heat and the light source to focus the non-focused light beam onto the fibrous substrate. Further, a preforming device includes the binder material activating device.
摘要:
A light emitting unit comprises at least one lighting means for emitting light (L) for heating a composite material, e.g. resin of a carbon fiber reinforced plastic, wherein the composite material can be fused and/or softened and/or cured, and/or be hold in a liquid state by the heating and wherein the emission of light (L) of the lighting means can be controlled differently in several areas. Furthermore, this relates to a method for producing a component made of the composite material as well as a method for producing the light emitting unit.
摘要:
A device for the layer-wise additive production of a complex three-dimensional component has a measuring mechanism for continuously monitoring quality indicators during the production of the component, wherein the measuring mechanism and a bed with a material powder are surrounded, at least in regions, by a processing cell filled with a protective gas atmosphere and the material powder of an uppermost layer can be melted in a locally limited manner in a melting zone by means of at least one laser. The measuring mechanism has the at least one laser and at least one optical sensor for the priority detection of the quality indicators in the region of the melting zone, in particular by means of Raman spectroscopy. Consequently, any construction errors in the component can be recognised, evaluated and, if necessary, corrected in a resource-saving manner without delay.
摘要:
A binder material activating device to activate a binder material on a fibrous substrate, the binder material activating device including a heat exposing device to expose the fibrous substrate with the binder material to heat. The heat exposing device includes a non-focused light source to provide a non-focused light beam and an optics device to be arranged in between the fibrous substrate to be exposed to heat and the light source to focus the non-focused light beam onto the fibrous substrate. Further, a preforming device includes the binder material activating device.