摘要:
A processing method of a silicon substrate including forming a second opening in a bottom portion of a first opening using a patterning mask having a pattern opening by plasma reactive ion etching. The reactive ion etching is performed with a shield structure formed in or on the silicon substrate, the shield structure preventing inside of the first opening from being exposed to the plasma.
摘要:
An ink jet head includes a Si substrate with a surface having a {100} orientation; a passage holding ink on the Si substrate; an ink discharge port which is communicatively connected to the passage and through which ink is ejected; and a supply port which extends through the Si substrate, which is communicatively connected to the passage, and which supplies ink to the passage. The supply port has walls having two {111} planes facing each other.
摘要:
A processing method of a silicon substrate including forming a second opening in a bottom portion of a first opening using a patterning mask having a pattern opening by plasma reactive ion etching. The reactive ion etching is performed with a shield structure formed in or on the silicon substrate, the shield structure preventing inside of the first opening from being exposed to the plasma.
摘要:
A liquid discharge head includes an Si substrate which is provided with an element for generating energy used in discharging a liquid and a liquid supply port which is provided to pass through the Si substrate from first surface to rear surface so as to supply a liquid to the element. A method of manufacturing the substrate includes: forming a plurality of concave portions on the rear surface of the Si substrate of which a plane orientation is {100}, the concave portions facing the first surface and aligned in rows along a direction the first surface; and forming a plurality of the supply ports by carrying out a crystal axis anisotropic etching on the Si substrate through the concave portions using an etching liquid of which an etching rate of the {100} plane of the Si substrate is slower than that of the {110} plane of the Si substrate.
摘要:
A liquid discharge head includes an Si substrate which is provided with an element for generating energy used in discharging a liquid and a liquid supply port which is provided to pass through the Si substrate from a first surface to a rear surface so as to supply a liquid to the element. A method of manufacturing the substrate includes: forming a plurality of concave portions on the rear surface of the Si substrate of which a plane orientation is {100}, the concave portions facing the first surface and aligned in rows along a direction of the Si substrate; and forming a plurality of the liquid supply ports by carrying out a crystal axis anisotropic etching on the Si substrate through the concave portions using an etching liquid of which an etching rate of the {100} plane of the Si substrate is slower than that of the {110} plane of the Si substrate.
摘要:
An ink jet head includes a Si substrate with a surface having a {100} orientation; a passage holding ink on the Si substrate; an ink discharge port which is communicatively connected to the passage and through which ink is ejected; and a supply port which extends through the Si substrate, which is communicatively connected to the passage, and which supplies ink to the passage. The supply port has walls having two {111} planes facing each other.
摘要:
A method for manufacturing a minute structure comprises a step of forming an ionizing radiation decomposing type positive type resist layer including a methyl isopropenyl ketone as a first positive type photosensitive material layer, a step of forming an ionizing radiation decomposing type positive type resist layer including a photosensitive material of a copolymer as a second positive type photosensitive material layer to be sensitized by an ionizing radiation of a second wavelength range on the first positive type photosensitive material layer, a step of forming a desired pattern in the above-mentioned second positive type photosensitive material layer, and development using a developing solution, and then, a step of forming a desired pattern in the above-mentioned first positive type photosensitive material layer to form a convex shape pattern.
摘要:
Provided is a liquid ejection head including a substrate including a liquid supply port and an energy generating element, in which the liquid supply port has at least one groove shape formed in a wall surface thereof, the at least one groove shape extending from a rear surface, which is a surface opposite to a front surface on which the energy generating element is formed, toward the front surface.
摘要:
A method for manufacturing a liquid discharge head includes the steps of: forming a solid layer for forming a flow path on a substrate on which an energy generating element is arranged to generate energy that is used to discharge liquid; forming, on the substrate where the solid layer is mounted, a coating layer for coating the solid layer; forming a discharge port used to discharge a liquid, through a photolithographic process, in the coating layer deposited on the solid layer; and removing the solid layer to form a flow path that communicates with the energy element and the discharge port. A material used for the coating layer contains a cationically polymerizable chemical compound, a cationic photopolymerization initiator and an inhibitor of cationic photopolymerization, and a material of the solid layer that forms a boundary with a portion where the discharge port of the coating layer is formed contains a copolymer of methacrylic acid and methacrylate ester.
摘要:
According to the present invention, a method for manufacturing a liquid discharge head includes the steps of depositing a solid layer for forming a flow path on a substrate on which an energy generating element is arranged to generate energy that is used to discharge liquid, forming, on the substrate where the solid layer is mounted, a coating layer for coating the solid layer, forming a discharge port used to discharge a liquid, through a photolithographic process, in the coating layer formed on the solid layer, and removing the solid layer to form a flow path that communicates with the energy element and the discharge port, whereby a material used for the coating layer contains a cationically polymerizable chemical compound, cationic photopolymerization initiator and a inhibitor of cationic photopolymerization, and whereby a material of the solid layer that forms a boundary with a portion where the discharge port of the coating layer is formed contains a copolymer of methacrylic anhydride and methacrylate ester.