摘要:
The invention provides a can steel sheet having satisfactory surface appearance and having workability, appearance property after working and high yield that can meet demands on complicated can forming, and a manufacturing process thereof. To be more specific, according to the invention, a slab having a composition containing, in weight %, C: more than 0.005% and equal to or less than 0.1%, Mn: 0.05-1.0% is subjected to hot-rolling at a finishing temperature of 800 to 1000° C., to coiling at 500 to 750° C., to cold-rolling, followed by continuous annealing at a recrystallization temperature or higher and 800° C. or lower, and then to box annealing at a temperature higher than 500° C. and equal to or lower than 600° C. for 1 hr or longer. The steel sheet has preferably a structure containing ferrite as a principle phase and having a mean grain diameter of 10 &mgr;m or less and further containing 0.1-1% by weight of pearlite grains each having a grain diameter of 0.5-3 &mgr;m. To obtain satisfactory surface appearance, it is preferable that the steel contains: Ti: 0.015-0.10%, Al: 0.001-0.01%, and a total of 0.0005-0.01% of one or two members of Ca, REM, and S−5×((32/40)Ca+(32/140)REM) of 0.0014% or less.
摘要:
A steel continuous casting method using a continuous caster that includes a pair of upper magnetic poles and a pair of lower magnetic poles is disclosed. The method comprises braking a molten steel flow with the DC magnetic fields respectively applied to the pair of upper magnetic poles and the pair of lower magnetic poles while stirring a molten steel with an AC magnetic field simultaneously applied to the pair of upper magnetic poles, the strength of an AC magnetic field applied to the upper magnetic poles is set within the range of 0.060 to 0.090 T and the strengths of DC magnetic fields applied to the upper and lower magnetic poles are controlled within particular ranges in accordance with the width of the slab to be cast and the casting speed.
摘要:
A groove (Da) extending in a Y-axis direction of a workpiece (D) is finish machined with an offset tool (T) that has a cross-section with a shape (L3) offset in a reducing direction by only a predetermined offset amount relative to a finished shape (L1) of the groove (Da) and that rotates around an axis of rotation parallel to a Z axis. Each time an incising step in which the offset tool (T) is relatively moved within the X-Z plane only by a predetermined distance on the circumference of an imaginary circle (C) having an initial position as its center and the offset amount (o) as its radius is carried out, a cutting step in which the entire length of the groove (Da) is cut while relatively moving the offset tool (T) in the Y-axis direction is carried out repeatedly. This enables the load imposed on the offset tool (T) to be suppressed compared with the case of a forming tool, which cuts a wide region of the groove (Da) of the workpiece (D) all at once, thus providing a method of machining a workpiece with an offset tool (T), the method allowing the durability of the offset tool (T) to be enhanced and the finishing precision of a machined face to be increased.
摘要:
A method of oscillating a mold of a vertical continuous caster of the type having a pair of longer side frames and a pair of shorter side frames. The mold is oscillated vertically during the casting. A pair of mold walls, e.g., the longer side frames, are moved towards and away from the cast metal in synchronization with a vertical oscillation of the mold, so as to control the condition for supplying a mold powder into the gap between the mold walls and the cast metal.
摘要:
In a method for continuously casting an extremely low carbon steel using a continuous casting machine, by adjusting the chemical components of extremely low carbon steel within a specified range by taking into account an interface tension gradient in a concentration boundary layer on a front surface of a solidified shell, and also by optimizing intensities of the DC magnetic fields applied to the upper magnetic poles and the lower magnetic poles respectively corresponding to a slab width of a slab to be casted and a casting speed, it is possible to acquire the slab having high quality not only with the small number of defects caused by the entrainment of bubbles, non-metallic inclusion and a mold flux into the molten steel.
摘要:
This invention proposes a continuous casting method for austenitic stainless steel capable of simultaneously establishing productivity and an excellent surface quality of steel sheet. For this purpose, the invention lies in a method of continuously casting austenitic stainless steel by pouring melt of austenitic stainless steel from a tundish through an immersion nozzle into a continuously casting mold of a continuous slab caster, solidifying it in the mold and continually drawing the resulting slab of given size out from the mold, characterized in that a high-speed continuous casting is carried out so as to satisfy a relation of casting speed, superheating degree of molten steel in the tundish, sectional area of discharge port in the immersion nozzle and slab width represented by the following equation: 0.30.ltoreq.V.sup.0.58 .multidot.W.sup.-0.04 .multidot..DELTA.T.multidot.d.sup.-0.96 .ltoreq.0.85 wherein V: casting speed (m/min) W: slab width (mm) .DELTA.T: superheating degree of molten steel in tundish (.degree.C.) d: square root of sectional area of nozzle discharge port (mm).
摘要:
A steel continuous casting method using a continuous caster that includes a pair of upper magnetic poles and a pair of lower magnetic poles is disclosed. The method comprises braking a molten steel flow with DC magnetic fields respectively applied to a pair of upper magnetic poles and a pair of lower magnetic poles while stirring the molten steel with an AC magnetic field simultaneously applied to the pair of upper magnetic poles, the strength of an AC magnetic field applied to the upper magnetic poles and strengths of DC magnetic fields applied to the upper magnetic poles and the lower magnetic poles are controlled within a particular ranges in accordance with the width of a slab to be cast.
摘要:
A steel continuous casting method using a continuous caster that includes a pair of upper magnetic poles and a pair of lower magnetic poles is disclosed. The method comprises braking a molten steel flow with the DC magnetic fields respectively applied to the pair of upper magnetic poles and the pair of lower magnetic poles while stirring a molten steel with an AC magnetic field simultaneously applied to the pair of upper magnetic poles, the strength of an AC magnetic field applied to the upper magnetic poles is set within the range of 0.060 to 0.090 T and the strengths of DC magnetic fields applied to the upper and lower magnetic poles are controlled within particular ranges in accordance with the width of the slab to be cast and the casting speed.
摘要:
During continuous casting of metals, a non-moving, vibrating magnetic field is applied to a molten metal in a casting mold to impose only vibration on the molten metal. This continuous casting method can produce a cast slab much less susceptible to flux entrainment, capture of bubbles and non-metal inclusions near the surface of the molten metal, and surface segregation. The magnetic field is preferably produced by arranging electromagnets in an opposing relation on both sides of the mold to lie side by side in the direction of longitudinal width of the mold, and supplying a single-phase AC current to each coil. The single-phase AC current preferably has frequency of 0.10 to 60 Hz. A static magnetic field can be applied intermittently in the direction of thickness of a cast slab. This technique can produce a cast slab substantially free from the flux entrainment and the surface segregation. Preferably, the static magnetic field is intermittently applied under setting of an on-time t1=0.10 to 30 seconds and an off-time t0=0.10 to 30 seconds. Also, the static magnetic field is preferably applied to the surface of the molten metal.
摘要:
At least three electromagnets are disposed along the longitudinal direction of a mold. While the electromagnets generate a vibrating magnetic field, peak positions of the vibrating magnetic field is shifted in the longitudinal direction of the mold.