Abstract:
In one embodiment, a gate of a transistor is formed by performing a first thermal treatment on a silicon layer, forming a metal stack over the silicon layer, and performing a second thermal treatment on the metal stack. The first thermal treatment may be a rapid thermal annealing step, while the second thermal treatment may be a rapid thermal nitridation step. The resulting gate exhibits relatively low interface contact resistance between the silicon layer and the metal stack, and may thus be advantageously employed in high-speed devices.
Abstract:
A method of forming a semiconductor structure comprises forming a nitride layer on a stack, and etching the nitride layer to form spacers in contact with sides of the stack. The stack is on a semiconductor substrate, the stack comprises (i) a gate layer, comprising silicon, (ii) a metallic layer, on the gate layer, and (iii) an etch-stop layer, on the metallic layer. The forming is by CVD with a gas comprising SixL2x, L is an amino group, and X is 1 or 2.
Abstract:
A semiconductor structure, comprises a semiconductor substrate, a gate layer on the semiconductor substrate, a metallic layer on the gate layer, and an etch-stop layer on the metallic layer. A distance between the substrate and a top of the etch-stop layer is a gate stack height, and the gate stack height is at most 2700 angstroms. In addition, the etch-stop layer has a thickness of at least 800 angstroms.
Abstract:
In one embodiment, a passivation level includes a low-k dielectric. The low-k dielectric helps lower the capacitance of a metal line in a last metal level, which may be just below the passivation level. In another embodiment, the metal line is relatively thick. This helps lower the metal line's resistance and resulting RC delay.
Abstract:
A method of making a semiconductor structure, comprises cleaning a gate stack with a cleaning solution. The gate stack comprises a gate layer, a metallic layer on the gate layer, and a etch-stop layer on the metallic layer. The gate layer is on a semiconductor substrate, the cleaning solution is a non-oxidizing cleaning solution, and the metallic layer comprises an easily oxidized metal.
Abstract:
In one embodiment, a transistor comprises raised structures over a source region and a drain region. The raised source structures may comprise selectively deposited metal, such as selective tungsten. A self-aligned contact structure formed through a dielectric layer may provide an electrical connection between an overlying structure (e.g., an interconnect line) and the source or drain region. The transistor may further comprise a gate stack having a capping layer over a metal.
Abstract:
In one embodiment, a passivation level includes a low-k dielectric. The low-k dielectric helps lower the capacitance of a metal line in a last metal level, which may be just below the passivation level. In another embodiment, the metal line is relatively thick. This helps lower the metal line's resistance and resulting RC delay.
Abstract:
A semiconductor structure includes a semiconductor substrate, a gate layer containing silicon on the semiconductor substrate, a metallic layer on the gate layer, and a nitride layer on the metallic layer. The gate layer contains a P+ region and an N+ region.
Abstract:
A method of making a semiconductor structure includes depositing a nitride layer, on a metallic layer, by PECVD. The metallic layer is on a gate layer containing silicon, and the gate layer is on a semiconductor substrate.
Abstract:
A method of forming a semiconductor structure comprises oxidizing a stack, to form sidewall oxide in contact with sides of the stack. The stack is on a semiconductor substrate, the stack includes a gate layer, comprising silicon; a metallic layer, on the gate layer; and an etch-stop layer, on the metallic layer. The sidewall oxide in contact with the metallic layer is thinner than the sidewall oxide in contact with the gate layer.