摘要:
The rare earth borides, e.g., the tetraborides and hexaborides of lanthanum, cerium and praseodymium, are directly prepared by heating/reacting a mixture of at least one rare earth chloride and elemental boron at an elevated temperature, e.g., a temperature ranging from 1,200.degree. to 1,500.degree. C.
摘要:
Particulates, e.g., powders, of the rare earth borides are well suited for the effective abrasion/polishing of a variety of characteristically hard substrate face surfaces, e.g., hard ceramic surfaces.
摘要:
Novel compositions containing finely divided barium titanate particulates homogeneously dispersed in a solid organic matrix material, the barium titanate particles having a mean diameter of at least 1 micron, are well adopted for the production of electromagnetic wave absorbers, e.g., seals for microwave ovens.
摘要:
The rare earth borides are prepared at relatively low temperatures by reacting a rare earth halide with elemental boron in the presence of a reducing amount of aluminum metal.
摘要:
The invention concerns a method for improving the energy resolution of a gamma ray detector comprising a monolithic scintillator and a photodetector segmented during a scintillation event characterized by the following steps:—detecting the time of arrival of the first photons on said photodetector;—counting, during a period T, which is between 2 and 6 times a transfer time (Te), the number and location of the first detected non-scattered photons;—determining the diameter and the position of a disk defined by a set of first non-scattered photons;—determining the position (X, Y) of a scintillation event from the location of said first detected non-scattered photons;—counting the number of the first detected non-scattered photons inside said disk during a period Td greater than a decay time (T) of the scintillator;—defining the energy of a gamma photon, said energy being proportional to the number of non-scattered photons counted inside the disc. The invention also concerns the associated detection system, the microelectronic component and a scintillator crystal treated for use in a PET application, and the use of the detection system according to the invention in PET and SPECT imagers.
摘要:
A Compton camera system and method for detecting gamma radiation, comprising a gamma radiation source, at least one fast scintillator plate P1 of which the rise time to peak light is less than 1 ns, having a thickness greater than or equal to 5 mm, equipped with an array of segmented photodetectors (5) and a dedicated fast-reading microelectronic means. The system is characterised in that it is capable of measuring the spatial and temporal coordinates (X, Y, Z, T) and energy E at at least two successive positions of a gamma photon when said photon undergoes Compton scattering at a first point A before being absorbed at a second point B, by recognising circles of non-scattered photons corresponding to each scintillation interaction. The system has a module for estimating a valid Compton event. The detection system has two scintillator plates P1 and P2.
摘要:
The invention relates to a process for manufacturing a single crystal comprising a rare-earth halide, having improved machining or cleavage behavior, comprising heat treatment in a furnace, the atmosphere of which is brought, for at least 1 hour, to between 0.70 times Tm and 0.995 times Tm of a single crystal comprising a rare-earth halide, Tm representing the melting point of said single crystal, the temperature gradient at any point in the atmosphere of the furnace being less than 15 K/cm for said heat treatment. After carrying out the treatment according to the invention, the single crystals may be machined or cleaved without uncontrolled fracture. The single crystals may be used in a medical imaging device, especially a positron emission tomography system or a gamma camera or a CT scanner, for crude oil exploration, for detection and identification of fissile or radioactive materials, for nuclear and high-energy physics, for astrophysics or for industrial control.
摘要:
The invention relates to a method of preparing a polycrystalline block of a halide of formula AeLnfX(3f+e) in which Ln represents one or more rare earths, X represents one or more halogen atoms selected from the group consisting of Cl, Br and I, and A represents one or more alkali metals selected from the group consisting of K, Li, Na, Rb and Cs, e, which may be zero, being less than or equal to 3f, and f being greater than or equal to 1, having a low water and oxyhalide content, in which the method comprises heating a mixture of, on the one hand, at least one compound having at least one Ln—X bond and, on the other hand, a sufficient amount of NH4X in order to obtain the oxyhalide content, resulting in a molten mass comprising the rare-earth halide, the heating being followed by cooling, and the heating, after having reached 300° C., never going below 200° C. before the molten mass has been obtained. The blocks thus produced allow very pure single crystals having remarkable scintillation properties to be grown.
摘要:
The invention relates to a method of preparing a polycrystalline block of a halide of formula AeLnfX(3f+e) in which Ln represents one or more rare earths, X represents one or more halogen atoms selected from the group consisting of Cl, Br and I, and A represents one or more alkali metals selected from the group consisting of K, Li, Na, Rb and Cs, e, which may be zero, being less than or equal to 3f, and f being greater than or equal to 1, having a low water and oxyhalide content, in which the method comprises heating a mixture of, on the one hand, at least one compound having at least one Ln—X bond and, on the other hand, a sufficient amount of NH4X in order to obtain the oxyhalide content, resulting in a molten mass comprising the rare-earth halide, the heating being followed by cooling, and the heating, after having reached 300° C., never going below 200° C. before the molten mass has been obtained. The blocks thus produced allow very pure single crystals having remarkable scintillation properties to be grown.
摘要:
Inorganic scintillator material of formula AnLnpX(3p+n) in which has a very low nuclear background noise and is particularly suitable as a detector scintillator for coating weight or thickness measurements, in the fields of nuclear medicine, physics, chemistry and oil exploration, and for the detection of dangerous or illicit materials.