摘要:
A pipeline inspection and defect mapping system includes a pig having an inertial measurement unit and a pipeline inspection unit for recording pig location and defect detection events, each record time-stamped by a highly precise onboard clock. The system also includes several magloggers at precisely known locations along the pipeline, each containing a fluxgate magnetometer for detecting the passage of the pig along the pipeline and further containing a highly precise clock synchronized with the clock in the pig. The locations of the various magloggers are known in a north/east/down coordinate system through a differential global positioning satellite process. Finally, a postprocessing off-line computer system receives downloaded maglogger, inertial measurement, and odometer data and through the use of several Kalman filters, derives the location of the detected defects in the north/east/down coordinate frame. Consequently, a task of identifying sites for repair activity is much simplified.
摘要:
A system and method for providing information for autonomous vehicle navigation are disclosed. The system comprises at least one laser scanner configured to perform one or more range and intensity scans of an area around the autonomous vehicle, and a geo-location unit comprising one or more global positioning system sensors and inertial navigation system sensors. The system also includes at least one processor in operative communication with the laser scanner and the geo-location unit. The processor is configured to execute one or more program modules comprising a ground plane-based processing module configured to receive range scan data transformed into world coordinates, and output ground plane-based classification data; a range-based processing module configured to receive data from a single range scan, and output range-based classification data; an intensity-based processing module configured to receive intensity scan data, and output intensity-based classification data; and a classification fusion module configured to receive the classification data from each of the processing modules, and output range bin classification data.
摘要:
A system and method for providing information for autonomous vehicle navigation are disclosed. The system comprises at least one laser scanner configured to perform one or more range and intensity scans of an area around the autonomous vehicle, and a geo-location unit comprising one or more global positioning system sensors and inertial navigation system sensors. The system also includes at least one processor in operative communication with the laser scanner and the geo-location unit. The processor is configured to execute one or more program modules comprising a ground plane-based processing module configured to receive range scan data transformed into world coordinates, and output ground plane-based classification data; a range-based processing module configured to receive data from a single range scan, and output range-based classification data; an intensity-based processing module configured to receive intensity scan data, and output intensity-based classification data; and a classification fusion module configured to receive the classification data from each of the processing modules, and output range bin classification data.
摘要:
A method and system for navigation of an unmanned aerial vehicle (UAV) in an urban environment are provided. The method comprises capturing a first set of Global Positioning System (GPS)-tagged images in an initial fly-over of the urban environment at a first altitude, with each of the GPS-tagged images being related to respective GPS-aided positions. The captured GPS-tagged images are stitched together into an image mosaic using the GPS-aided positions. A second set of images is captured in a subsequent fly-over of the urban environment at a second altitude that is lower than the first altitude. Image features from the second set of images are matched with image features from the image mosaic during the subsequent fly-over. A current position of the UAV relative to the GPS-aided positions is calculated based on the matched image features from the second set of images and the image mosaic.
摘要:
A ground contact switch system comprises a first object configured to contact a ground surface during a stride, and one or more switches coupled to the first object. An inertial measurement unit can be coupled to the first object. The one or more switches are configured to detect when the first object is at a stationary portion of the stride. The one or more switches can also be configured to send a signal to activate an error correction scheme for the inertial measurement unit.
摘要:
A ground contact switch system comprises a first object configured to contact a ground surface during a stride, and one or more switches coupled to the first object. An inertial measurement unit can be coupled to the first object. The one or more switches are configured to detect when the first object is at a stationary portion of the stride. The one or more switches can also be configured to send a signal to activate an error correction scheme for the inertial measurement unit.
摘要:
A method and system are provided for autonomous vehicle navigation. In the method and system, one or more Global Positioning System (GPS) sensors, one or more inertial sensors, and one or more image sensors are provided on an autonomous vehicle. During operation of the autonomous vehicle, one or more GPS measurements, one or more inertial measurements, and one or more image measurements are obtained from the respective GPS sensors, inertial sensors, and image sensors. Each of the GPS measurements, inertial measurements, and image measurements are integrated together to estimate a position of the autonomous vehicle over time.
摘要:
A method and system are provided for autonomous vehicle navigation. In the method and system, one or more Global Positioning System (GPS) sensors, one or more inertial sensors, and one or more image sensors are provided on an autonomous vehicle. During operation of the autonomous vehicle, one or more GPS measurements, one or more inertial measurements, and one or more image measurements are obtained from the respective GPS sensors, inertial sensors, and image sensors. Each of the GPS measurements, inertial measurements, and image measurements are integrated together to estimate a position of the autonomous vehicle over time.
摘要:
An elongated inertial measurement unit having a plurality of gyros, none of which is aligned with the cardinal longitudinal axis of the elongated housing. At least one gyro has its input sensing axis aligned at an angle between 35 and 55 degrees, preferably at 45 degrees, relative to the cardinal longitudinal axis. This results in effective dithering by each of the enclosed gyros. All of the gyros are situated such that the centers of their masses or configurations are aligned with or approximately located in a row along the longitudinal axis of the elongated housing. The housing may be of various cross-sectional shapes, but the preferred shape of such housing is a right circular cylinder.
摘要:
A method and system for navigation of one or more unmanned aerial vehicles in an urban environment is provided. The method comprises flying at least one Global Positioning System (GPS)-aided unmanned aerial vehicle at a first altitude over an urban environment, and flying at least one GPS-denied unmanned aerial vehicle at a second altitude over the urban environment that is lower than the first altitude. The unmanned aerial vehicles are in operative communication with each other so that images can be transmitted therebetween. A first set of images from the GPS-aided unmanned aerial vehicle is captured, and a second set of images from the GPS-denied unmanned aerial vehicle is also captured. Image features from the second set of images are then matched with corresponding image features from the first set of images. A current position of the GPS-denied unmanned aerial vehicle is calculated based on the matched image features from the first and second sets of images.