摘要:
In some embodiments a secure permit request to change a hardware configuration is created. The secure permit request is sent to a remote location, and a permit sent from the remote location in response to the permit request is received. The hardware configuration is changed in response to the received permit. Other embodiments are described and claimed.
摘要:
Technologies for secure offline activation of hardware features include a target computing device having a platform controller hub (PCH) including a converged security and manageability engine (CSME) and a number of in-field programmable fuses (IFPs). During assembly of the target computing device by an original equipment manufacturer (OEM), the CSME is provided a list of hardware features to be activated. The CSME configures the IFPs to enable the requested features, generates a digital receipt including the activated features and a unique device ID, and signs the receipt using a unique device key. Signed receipts may be periodically submitted to a vendor computing device, which verifies the signed receipts, extracts the active feature list, and bills the OEM for activated features of the PCHs. The vendor computing device may bill the OEM a maximum price for PCHs for which there is no associated signed receipt. Other embodiments are described and claimed.
摘要:
In one embodiment, a processor has at least one core to execute instructions, a security engine coupled to the at least one core, a first storage to store a first immutable key associated with a vendor of the processor, and a second storage to store a second immutable key associated with an original equipment manufacturer (OEM) of the system. A first portion of firmware is to be verified based at least in part on the first immutable key and a second portion of firmware is to be verified based at least in part on the second immutable key, the first portion of firmware associated with the vendor and the second portion of firmware associated with the OEM. Other embodiments are described and claimed.
摘要:
In one embodiment, an apparatus includes a non-volatile storage to store a seed value and a signature that is based on an iterative execution of a function for a predetermined number of intervals. The apparatus may further include the security processor coupled to the non-volatile storage, where the security processor is to independently recover a credential for an updated version of the firmware based at least in part on the seed value and a security version number for the updated version of the firmware. Other embodiments are described and claimed.
摘要:
Embodiments include a serial bus controller that may be coupled to an in band serial peripheral interface (SPI) link, to request a write of data and a subsequent read of the data from a slave device and in response to the request to read the data, receive a bit error report and optionally correct the bit error over the in band SPI link. Embodiments include a slave device, e.g., a flash memory device, to detect and report the bit error over the in band SPI link, where the flash memory device, in response to a request to write and/or erase data, calculates or determines an error correction code (ECC) and stores corresponding parity data. In embodiments, after receiving a subsequent request to read the data, the flash memory device accesses the stored parity data to check the ECC for a bit error and if a bit error is detected, reports the detected bit error over the in band SPI link. Other embodiments may be described and claimed.
摘要:
Techniques for generating access information indicating a least recently used (LRU) memory region in a set of memory regions. In an embodiment, data is stored in an entry of an LRU tracking list (LTL) based on a touch message indicating when a memory group has been touched—e.g. read from, written to and/or associated with a memory region. The data stored in an LTL entry may include an identifier of a memory group and/or validity data specifying whether that LTL entry stores a set of default data. In another embodiment, access information may be generated based on the memory group identifier and the validity data.
摘要:
Embodiments of the invention create an underlying infrastructure in a flash memory device (e.g., a serial peripheral interface (SPI) flash memory device) such that it may be protected against user attacks—e.g., replacing the SPI flash memory device or a man-in-the-middle (MITM) attack to modify the SPI flash memory contents on the fly. In the prior art, monotonic counters cannot be stored in SPI flash memory devices because said devices do not provide replay protection for the counters. A user may also remove the flash memory device and reprogram it. Host platforms alone cannot protect against such hardware attacks.Embodiments of the invention enable secure standard storage flash memory devices such as SPI flash memory devices to achieve replay protection for securely stored data. Embodiments of the invention utilize flash memory controllers, flash memory devices, unique device keys and HMAC key logic to create secure execution environments for various components.
摘要:
Embodiments of the invention create an underlying infrastructure in a flash memory device (e.g., a serial peripheral interface (SPI) flash memory device) such that it may be protected against user attacks—e.g., replacing the SPI flash memory device or a man-in-the-middle (MITM) attack to modify the SPI flash memory contents on the fly. In the prior art, monotonic counters cannot be stored in SPI flash memory devices because said devices do not provide replay protection for the counters. A user may also remove the flash memory device and reprogram it. Host platforms alone cannot protect against such hardware attacks.Embodiments of the invention enable secure standard storage flash memory devices such as SPI flash memory devices to achieve replay protection for securely stored data. Embodiments of the invention utilize flash memory controllers, flash memory devices, unique device keys and HMAC key logic to create secure execution environments for various components.