Abstract:
Embodiments provide apparatuses, methods, and computer programs for a receiver and a transmitter of a wireless system. An apparatus (10) for a receiver (100) of a wireless communication system comprises means for receiving (12) radio signals, which are organized in repetitive radio frames, a radio frame being subdivided in sub-frames. The apparatus (10) further comprises means for extracting (14) a first payload data packet from the received radio signals using a single sub-frame of the received radio signals and for extracting a second payload data packet using two or more sub-frames of two or more radio frames. An apparatus (20) for a transmitter (200) comprises means for obtaining (22) information on a subset of radio resources for scheduled and/or non-scheduled transmission. The apparatus (20) further comprises means for transmitting (24) radio signals, which are organized in repetitive radio frames, a radio frame being subdivided in sub-frames, the means for transmitting (24) is operable to transmit a first payload data packet using a single sub-frame of the radio signal and for transmitting a second payload data packet using two or more sub-frames.
Abstract:
A method of providing a multi-carrier modulated signal (mcs), which has at least one sub-band (sb1) having a plurality of subcarriers (sc), includes the following: receiving (200) an input signal vector (s), wherein each component of the input signal vector is associated with one of the plurality of subcarriers, expanding (210) the input signal vector by adding one or more additional vector elements in front of and/or after the components of the input signal vector to obtain an expanded signal vector (sext), upsampling (220) the expanded signal vector to obtain an upsampled signal vector (sup), and filtering (230) the upsampled signal vector to obtain a filtered sub-band output signal (Xfilt).
Abstract:
Embodiments provide apparatuses, methods and computer programs for mobile communication systems comprising base station transceivers and mobile transceivers. An apparatus (10, 20) for a base station transceiver (100) (and/or a mobile transceiver (200)) of a mobile communication system (300), comprises a transceiver module (12, 22) to communicate with the mobile transceiver (200) (and/or base station transceiver (100)) using at least a first communication channel and a second communication channel, wherein the first communication channel is more reliable than the second communication channel. The apparatus (10, 20) further comprises a controller module (14, 24) to control the transceiver module (12, 22), and to provide a data service to the mobile transceiver (200) (and/or base station transceiver (100)). The data service comprises first and second data packets, wherein the first data packets comprise information related to core data of the data service, and wherein the second data packets comprise information related to optional refinement data for the data service. The first data packets use the first communication channel, and the second data packets use the second communication channel.
Abstract:
Embodiments provide apparatuses, methods, and computer programs for a receiver and a transmitter of a wireless system. An apparatus (10) for a receiver (100) of a wireless communication system comprises means for receiving (12) radio signals, which are organized in repetitive radio frames, a radio frame being subdivided in sub-frames. The apparatus (10) further comprises means for extracting (14) a first payload data packet from the received radio signals using a single sub-frame of the received radio signals and for extracting a second payload data packet using two or more sub-frames of two or more radio frames. An apparatus (20) for a transmitter (200) comprises means for obtaining (22) information on a subset of radio resources for scheduled and/or non-scheduled transmission. The apparatus (20) further comprises means for transmitting (24) radio signals, which are organized in repetitive radio frames, a radio frame being subdivided in sub-frames, the means for transmitting (24) is operable to transmit a first payload data packet using a single sub-frame of the radio signal and for transmitting a second payload data packet using two or more sub-frames.
Abstract:
A device to process a channel state information reference signal CSI-RS and further data to be transmitted via a first radio module of a radio communications network, in which data to be transmitted is mapped on subcarriers and in the radio module subsequently up-converted to a radio frequency higher than the subcarrier frequencies is provided. The subcarriers are grouped into frequency subbands, and at least one subband is scalable with at least one subband parameter for a period of time. A subband parameter is in particular a subcarrier spacing, and in at least one subband at least two different parameters, in particular subcarrier spacings, can be used.
Abstract:
Embodiments relate to a receiver (310) for receiving a multicarrier signal. The multicarrier signal comprises a first frequency block with a first group of subcarriers, the first frequency block being filtered with a first frequency block specific sideband suppression filter (106-1) for sideband suppression outside of said first frequency block, and at least a second frequency block with at least a second group of subcarriers, the second frequency block being filtered with a second frequency block specific sideband suppression filter (106-2) for sideband suppression outside of said second frequency block. The receiver (310) comprises a filter module (320) operable to perform an inverse sideband suppression filter operation for the first and at least the second frequency block.
Abstract:
The invention concerns a method for conditioning a multicarrier transmit signal using a first or a second set of subgroups of time-frequency resource elements, with a subgroup of the first set of subgroups and a subgroup of the second set of subgroups having common time or frequency resources and being neighbored in time or frequency, wherein a first filter module (FILT1) filters the first set of subgroups using a first filter characteristic by a first set of filter coefficients, and a second filter module (FILT2) filters the second set of subgroups using a second filter characteristic by a second set of filter coefficients, and a base station and a transmitter apparatus (TA) therefor.
Abstract:
It is proposed a device to process data to be transmitted via a first radio module of a radio communications network, in which data to be transmitted is mapped on subcarriers and in the radio module subsequently up-converted to a radio frequency higher than the subcarrier frequencies, wherein the subcarriers are grouped into frequency subbands, and wherein at least one subband is scalable with at least one subband parameter, wherein a subband parameter is in particular a subcarrier spacing, and wherein in at least one subband at least two different parameters, in particular subcarrier spacings, can be used.
Abstract:
The invention concerns a method for conditioning a multicarrier transmit signal using a first or a second set of subgroups of time-frequency resource elements, with a subgroup of the first set of subgroups and a subgroup of the second set of subgroups having common time or frequency resources and being neighbored in time or frequency, wherein a first filter module (FILT1) filters the first set of subgroups using a first filter characteristic by a first set of filter coefficients, and a second filter module (FILT2) filters the second set of subgroups using a second filter characteristic by a second set of filter coefficients, and a base station and a transmitter apparatus (TA) therefor.
Abstract:
The invention relates to a method of providing a multi-carrier modulated signal (mcs) which comprises at least one sub-band (sb1), wherein said sub-band (sb1) comprises a plurality of subcarriers (sc), comprising the following steps: receiving (200) an input signal vector (s), wherein each component of said input signal vector (s) is associated with one of said plurality of subcarriers, expanding (210) said input signal vector (s) by adding one or more additional vector elements in front of and/or after the components of said input signal vector (s), whereby an expanded signal vector (sext) is obtained, upsampling (220) the expanded signal vector (sext)/whereby an upsampled signal vector (sup) is obtained, filtering (230) the upsampled signal vector (sup) to obtain a filtered sub-band output signal (Xfilt).