Abstract:
System for producing a system clock signal comprising a local oscillator configured to generate a first clock signal; a temperature detector configured to detect a temperature change above a critical value in an area including the local oscillator; an obtaining module configured to obtain a second clock signal; a clock generator configured to generate the system clock signal in a first manner, using the first clock signal, in a normal mode when the temperature detector does not detect a temperature change above the critical value, and in a second manner different from the first manner, using the second clock signal, in a reverse hold-over mode when the temperature detector has detected a temperature change above the critical value.
Abstract:
Transmission device including at least one electric conductor for the transmission of an AC signal and a dielectric material at least partly surrounding the at least one conductor. The dielectric material includes dipoles. The device further includes a dipole orienting system adapted to orient the dipoles and to force the dipoles in a saturation regime in order to limit the movement of the dipoles when the at least one electric conductor conducts an AC signal.
Abstract:
System for producing a system clock signal comprising a local oscillator configured to generate a first clock signal; a temperature detector configured to detect a temperature change above a critical value in an area including the local oscillator; an obtaining module configured to obtain a second clock signal; a clock generator configured to generate the system clock signal in a first manner, using the first clock signal, in a normal mode when the temperature detector does not detect a temperature change above the critical value, and in a second manner different from the first manner, using the second clock signal, in a reverse hold-over mode when the temperature detector has detected a temperature change above the critical value.
Abstract:
System for use in combination with a remote node powered by a first number of lines, each line thereof being capable of providing power to the remote node in an active state of the line and not being capable of providing power to the remote node in a non-active state of the line; said system comprising: a second number of convertors; and a power control part configured for controlling the power provided by each line of said first number of lines to a converter of said second number of converters, in function of the time, depending of the states of the first number of lines.