摘要:
A solar concentrator module (80) employs a luminescent concentrator material (82) between photovoltaic cells (86) having their charge-carrier separation junctions (90) parallel to front surfaces (88) of photovoltaic material 84 of the photovoltaic cells (86). Intercell areas (78) covered by the luminescent concentrator material (82) occupy from 2 to 50% of the total surface area of the solar concentrator modules (80). The luminescent concentrator material (82) preferably employs quantum dot heterostructures, and the photovoltaic cells (86) preferably employ low-cost high-efficiency photovoltaic materials (84), such as silicon-based photovoltaic materials.
摘要:
The light conversion efficiency of a solar cell (10) is enhanced by using an optical downshifting layer (30) in cooperation with a photovoltaic material (22). The optical downshifting layer converts photons (50) having wavelengths in a supplemental light absorption spectrum into photons (52) having a wavelength in the primary light absorption spectrum of the photovoltaic material. The cost effectiveness and efficiency of solar cells platforms (20) can be increased by relaxing the range of the primary light absorption spectrum of the photovoltaic material. The optical downshifting layer can be applied as a low cost solution processed film composed of highly absorbing and emissive quantum dot heterostructure nanomaterial embedded in an inert matrix to improve the short wavelength response of the photovoltaic material. The enhanced efficiency provided by the optical downshifting layer permits advantageous modifications to the solar cell platform that enhances its efficiency as well.
摘要:
A solar concentrator module (80) employs a luminescent concentrator material (82) between photovoltaic cells (86) having their charge-carrier separation junctions (90) parallel to front surfaces (88) of photovoltaic material 84 of the photovoltaic cells (86). Intercell areas (78) covered by the luminescent concentrator material (82) occupy from 2 to 50% of the total surface area of the solar concentrator modules (80). The luminescent concentrator material (82) preferably employs quantum dot heterostructures, and the photovoltaic cells (86) preferably employ low-cost high-efficiency photovoltaic materials (84), such as silicon-based photovoltaic materials.
摘要:
The light conversion efficiency of a solar cell (10) is enhanced by using an optical downshifting layer (30) in cooperation with a photovoltaic material (22). The optical downshifting layer converts photons (50) having wavelengths in a supplemental light absorption spectrum into photons (52) having a wavelength in the primary light absorption spectrum of the photovoltaic material. The cost effectiveness and efficiency of solar cells platforms (20) can be increased by relaxing the range of the primary light absorption spectrum of the photovoltaic material. The optical downshifting layer can be applied as a low cost solution processed film composed of highly absorbing and emissive quantum dot heterostructure nanomaterial embedded in an inert matrix to improve the short wavelength response of the photovoltaic material. The enhanced efficiency provided by the optical downshifting layer permits advantageous modifications to the solar cell platform that enhances its efficiency as well.
摘要:
A method of forming a metal oxide nanostructure comprises disposing a chelated oligomeric metal oxide precursor on a solvent-soluble template to form a first structure comprising a deformable chelated oligomeric metal oxide precursor layer; setting the deformable chelated oligomeric metal oxide precursor layer to form a second structure comprising a set metal oxide precursor layer; dissolving the solvent-soluble template with a solvent to form a third structure comprising the set metal oxide precursor layer; and thermally treating the third structure to form the metal oxide nanostructure.
摘要:
Disclosed herein are a silane coupling agent and a method of preparing the same useful for a composite organic-inorganic material. The silane coupling agent is represented by the formula of R1R2R3Si—X, wherein R1, R2, and R3, respectively, represent straight or branched alkyl having 4 to 22 carbon atoms, alkoxy, phenyl, phenyl alkoxy, benzyloxy or phenyl alkyl group. The method comprises the steps of: dissolving a vinyl derivative in a solvent under a nitrogen or argon atmosphere; and reacting the resulting solution with an alkoxysilane derivative at a temperature of 20 to 200° C. for 1 to 72 hours in the presence of a metal catalyst. Alternatively, the method comprises the steps of: dissolving alkylmagnesium halide in a solvent under a nitrogen or argon; and reacting the resulting solution with haloalkoxysilane at a temperature of −78° C. to 50° C. for 0.1 to 5 hours.
摘要翻译:本文公开了一种硅烷偶联剂及其制备方法,可用于复合有机 - 无机材料。 硅烷偶联剂由式R 1 R 2 R 3 Si-X表示,其中R 1,R 2和R 3分别表示具有4至22个碳原子的直链或支链烷基,烷氧基,苯基,苯基烷氧基,苄氧基或苯基烷基。 该方法包括以下步骤:在氮气或氩气氛下将乙烯基衍生物溶解在溶剂中; 并使所得溶液与烷氧基硅烷衍生物在20〜200℃的温度下在金属催化剂存在下反应1〜72小时。 或者,该方法包括以下步骤:在氮气或氩气下将烷基卤化镁溶解在溶剂中; 并将所得溶液与卤代烷氧基硅烷在-78℃至50℃的温度下反应0.1至5小时。
摘要:
A method of forming a metal oxide nanostructure comprises disposing a chelated oligomeric metal oxide precursor on a solvent-soluble template to form a first structure comprising a deformable chelated oligomeric metal oxide precursor layer; setting the deformable chelated oligomeric metal oxide precursor layer to form a second structure comprising a set metal oxide precursor layer; dissolving the solvent-soluble template with a solvent to form a third structure comprising the set metal oxide precursor layer; and thermally treating the third structure to form the metal oxide nanostructure.
摘要:
A method of forming a metal oxide nanostructure comprises disposing a chelated oligomeric metal oxide precursor on a solvent-soluble template to form a first structure comprising a deformable chelated oligomeric metal oxide precursor layer; setting the deformable chelated oligomeric metal oxide precursor layer to form a second structure comprising a set metal oxide precursor layer; dissolving the solvent-soluble template with a solvent to form a third structure comprising the set metal oxide precursor layer; and thermally treating the third structure to form the metal oxide nanostructure.
摘要:
Disclosed are inorganic-organic copolymers and their preparation using polyvinylalcohol-silane coupling agents. The inorganic-organic copolymers can be prepared through the reaction of silane-coupling agents containing hydroxy groups and silane groups with organic metal compounds. The inorganic-organic copolymers are of high transparency as well as shows superb moisture barrier characteristics and hydrophilicity and can be applied as resins or film coatings for many fields, including anti-fogging agents, anti-foaming agents, lubricants, paints, anti-corrosive coatings, water-resistant coatings, plastic or metal-protective coatings.