摘要:
An RF system for reducing intermodulation (IM) products is disclosed. The RF system includes a first nonlinear element and a second nonlinear element, wherein the second nonlinear element generates inherent IM products and the first nonlinear element is adapted to generate compensating IM products. Alternatively, the first nonlinear element generates inherent IM products and the second nonlinear element is adapted to generate compensating IM products. The amplitudes of the compensating IM products are substantially equal to amplitudes of the inherent IM products. The RF system further includes a phase shifter that is adapted to provide a phase shift that results in around 180° of phase shift between the inherent IM products and the compensating IM products. The phase shifter is coupled between the first nonlinear element and the second nonlinear element.
摘要:
An RF system for reducing intermodulation (IM) products is disclosed. The RF system includes a first nonlinear element and a second nonlinear element, wherein the second nonlinear element generates inherent IM products and the first nonlinear element is adapted to generate compensating IM products. Alternatively, the first nonlinear element generates inherent IM products and the second nonlinear element is adapted to generate compensating IM products. The amplitudes of the compensating IM products are substantially equal to amplitudes of the inherent IM products. The RF system further includes a phase shifter that is adapted to provide a phase shift that results in around 180° of phase shift between the inherent IM products and the compensating IM products. The phase shifter is coupled between the first nonlinear element and the second nonlinear element.
摘要:
A switch branch that improves voltage uniformity across a series stack of an n-number of transistors is disclosed. A first one of the n-number of transistors is coupled to an input terminal, and an nth one of the n-number of transistors is coupled to an output terminal, where n is a positive integer greater than one. Predetermined parasitic capacitances associated with each of the n-number of transistors are adjustable with respect to capacitance value by predetermined amounts by dimensioning and arranging at least one metal layer element in proximity to the series stack of the n-number of transistors. Capacitance values for the predetermined parasitic capacitances are selected such that a voltage across the series stack of the n-number of transistors is uniformly distributed. In this way, the n-number of transistors can be reduced without risking a transistor breakdown within the series stack of the n-number of transistors.
摘要:
A radio frequency (RF) switch die which includes an antenna port, a plurality of RF ports, a switch fabric for selectively coupling one or more of the RF ports to the antenna port, and control circuitry that is adapted to, in a first mode, direct the switch fabric to couple any one of the plurality of RF ports individually to the antenna port, and in a second mode, couple a selected group of the RF ports to the antenna port. The RF switch die may include M number of RF ports, and be relatively easily reconfigured to provide N number of RF ports, wherein N is less than M. Groups of RF ports may be coupled together to form coupled RF ports that offer different electrical characteristics than non-coupled RF ports.
摘要:
A radio frequency (RF) switch die which includes an antenna port, a plurality of RF ports, a switch fabric for selectively coupling one or more of the RF ports to the antenna port, and control circuitry that is adapted to, in a first mode, direct the switch fabric to couple any one of the plurality of RF ports individually to the antenna port, and in a second mode, couple a selected group of the RF ports to the antenna port. The RF switch die may include M number of RF ports, and be relatively easily reconfigured to provide N number of RF ports, wherein N is less than M. Groups of RF ports may be coupled together to form coupled RF ports that offer different electrical characteristics than non-coupled RF ports.
摘要:
The present disclosure relates to gate oxide protection circuits, which are used to protect the gate oxides of field effect transistor (FET) elements from over voltage conditions, particularly during situations in which the gate oxides are particularly vulnerable, such as during certain manufacturing stages. Each gate oxide protection circuit may be coupled to a corresponding FET element through corresponding first and second resistive elements, which are coupled to a corresponding gate connection node and a corresponding first connection node, respectively, of the FET element. The gate connection node and the first connection node are electrically adjacent to opposite sides of the gate oxide of the FET element. Each gate oxide protection circuit may protect its corresponding FET element by limiting a voltage between the gate connection node and the first connection node.
摘要:
The present invention relates to using a trap-rich layer, such as a polycrystalline Silicon layer, over a semiconductor substrate to substantially immobilize a surface conduction layer at the surface of the semiconductor substrate at radio frequency (RF) frequencies. The trap-rich layer may have a high density of traps that trap carriers from the surface conduction layer. The average release time from the traps may be longer than the period of any present RF signals, thereby effectively immobilizing the surface conduction layer, which may substantially prevent capacitance and inductance changes due to the RF signals. Therefore, harmonic distortion of the RF signals may be significantly reduced or eliminated. The semiconductor substrate may be a Silicon substrate, a Gallium Arsenide substrate, or another substrate.
摘要:
The present invention relates to using a trap-rich layer, such as a polycrystalline Silicon layer, over a semiconductor substrate to substantially immobilize a surface conduction layer at the surface of the semiconductor substrate at radio frequency (RF) frequencies. The trap-rich layer may have a high density of traps that trap carriers from the surface conduction layer. The average release time from the traps may be longer than the period of any present RF signals, thereby effectively immobilizing the surface conduction layer, which may substantially prevent capacitance and inductance changes due to the RF signals. Therefore, harmonic distortion of the RF signals may be significantly reduced or eliminated. The semiconductor substrate may be a Silicon substrate, a Gallium Arsenide substrate, or another substrate.
摘要:
A process for forming a bipolar junction transistor (BJT) in a semiconductor substrate and a BJT formed according to the process. A buried isolation region is formed underlying BJT structures to isolate the BJT structures from the p-type semi-conductor substrate. To reduce capacitance between a BJT subcollector and the buried isolation region, prior to implanting the subcollector spaced-apart structures are formed on a surface of the substrate. The subcollector is formed by implanting ions through the spaced-apart structures and through a region intermediate the spaced-apart structures. The formed BJT subcollector therefore comprises a body portion and end portions extending therefrom, with the end portions disposed at a shallower depth than the body portion, since the ions implanting the end portions must pass through the spaced-apart structures. The shallower depth of the end portions reduces the capacitance.
摘要:
A process for forming bipolar junction transistors having a plurality of different collector doping densities on a semiconductor substrate and an integrated circuit comprising bipolar junction transistors having a plurality of different collector doping densities. A first group of the transistors are formed during formation of a triple well for use in providing triple well isolation for complementary metal oxide semiconductor field effect transistors also formed on the semiconductor substrate. Additional bipolar junction transistors with different collector doping densities are formed during a second doping step after forming a gate stack for the field effect transistors. Implant doping through bipolar transistor emitter windows forms bipolar transistors having different doping densities than the previously formed bipolar transistors. According to one embodiment of the present invention, bipolar junction transistors having six different collector dopant densities (and thus six different breakdown characteristics) are formed.