摘要:
Embodiments provide implementations for estimating a test application's energy usage on a target device based on execution of the test application. Resource usage associated with the execution of the test application is measured. The measured resource usage is input into a power model of the target device to estimate the energy that the test application uses when executed on the target device. An emulation system is configured to execute the test application in a virtual execution environment using resource scaling and simulated target device application programming interfaces to substantially simulate the corresponding capabilities of the target device.
摘要:
Embodiments provide implementations for estimating a test application's energy usage on a target device based on execution of the test application. Resource usage associated with the execution of the test application is measured. The measured resource usage is input into a power model of the target device to estimate the energy that the test application uses when executed on the target device. An emulation system is configured to execute the test application in a virtual execution environment using resource scaling and simulated target device application programming interfaces to substantially simulate the corresponding capabilities of the target device.
摘要:
Embodiments include processes, systems, and devices for developing a virtual sensor. The virtual sensor includes one or more inference models. A decision engine utilizes an inference model associated with a mobile device to determine another inference model that is configured to accept physical sensor data from another mobile device. In this way, the virtual sensor can be developed for use with many mobile devices using initial inference models developed for a small number of mobile devices or a single mobile device. Embodiments also include methods to select mobile devices from which to request physical sensor data for virtual sensor input. Embodiments also include architectures that provide a library of virtual sensors.
摘要:
Embodiments include processes, systems, and devices for developing a virtual sensor. The virtual sensor includes one or more inference models. A decision engine utilizes an inference model associated with a mobile device to determine another inference model that is configured to accept physical sensor data from another mobile device. In this way, the virtual sensor can be developed for use with many mobile devices using initial inference models developed for a small number of mobile devices or a single mobile device. Embodiments also include methods to select mobile devices from which to request physical sensor data for virtual sensor input. Embodiments also include architectures that provide a library of virtual sensors.
摘要:
Techniques for ability enhancement are described. In some embodiments, devices and systems located in a transportation network share threat information with one another, in order to enhance a user's ability to operate or function in a transportation-related context. In one embodiment, a process in a vehicle receives threat information from a remote device, the threat information based on information about objects or conditions proximate to the remote device. The process then determines that the threat information is relevant to the safe operation of the vehicle. Then, the process modifies operation of the vehicle based on the threat information, such as by presenting a message to the operator of the vehicle and/or controlling the vehicle itself.
摘要:
Techniques for ability enhancement are described. Some embodiments provide an ability enhancement facilitator system (“AEFS”) configured to automatically translate utterances from a first to a second language, based on speaker-related information determined from speaker utterances and/or other sources of information. In one embodiment, the AEFS receives data that represents an utterance of a speaker in a first language, the utterance obtained by a hearing device of the user, such as a hearing aid, smart phone, media player/device, or the like. The AEFS then determines speaker-related information associated with the identified speaker, such as by determining demographic information (e.g., gender, language, country/region of origin) and/or identifying information (e.g., name or title) of the speaker. The AEFS translates the utterance in the first language into a message in a second language, based on the determined speaker-related information. The AEFS then presents the message in the second language to the user.
摘要:
Systems and methods are described relating to accepting a mobile device location query using digital signal processing and presenting an indication of location of the mobile device at least partially based on receiving the location query. Additionally, systems and methods are described relating to means for accepting a mobile device location query using digital signal processing and means for presenting an indication of location of the mobile device at least partially based on receiving the location query.
摘要:
A new media access control (MAC) protocol for cognitive wireless networks is described. The new MAC protocol allows each of multiple nodes, such as cell phones and computers with wireless, to determine utilization of a communication spectrum, such as the television broadcast band. The nodes collaborate to achieve a combined view of spectrum utilization in their local vicinity, in which scheduled users and empty time segments are mapped across a wide range of frequencies. Nodes negotiate with each other to reserve idle segments of the spectrum for packet exchange on negotiated frequencies. Control packet structure allows nodes to become prescient of the local spectrum utilization during handshaking. A cognitive device operating under the new MAC has a first radio that both scans the spectrum and monitors a control channel; and a second reconfigurable radio with adjustable parameters, including frequency and bandwidth, for packet transmission.
摘要:
Constructing an inference graph relates to the creation of a graph that reflects dependencies within a network. In an example embodiment, a method includes determining dependencies among components of a network and constructing an inference graph for the network responsive to the dependencies. The components of the network include services and hardware components, and the inference graph reflects cross-layer components including the services and the hardware components. In another example embodiment, a system includes a service dependency analyzer and an inference graph constructor. The service dependency analyzer is to determine dependencies among components of a network, the components including services and hardware components. The inference graph constructor is to construct an inference graph for the network responsive to the dependencies, the inference graph reflecting cross-layer components including the services and the hardware components.
摘要:
A method to determine if a rogue device is connected to a specific wired network from dynamic host control protocol (DHCP) requests on the wired network. These DHCP requests are analyzed to determine the type of device issuing the request. Once the type of device has been determined, it can be checked against a list of authorized device types. If the device issuing the DHCP request is not an authorized device type, then it can be determined that the suspect device is a rogue that is connected to the specific wired network. Additionally, even if the system of the present invention determines that it is an authorized device type, if the device is not one of the few authorized devices of this type, e.g. because its MAC address is not recognized as that of one of the authorized devices, the system can flag the suspect as a rogue.