Abstract:
User input is accepted by a force sensing resistor (“FSR”) assembly, a force sensing capacitor (“FSC”) assembly, or both. The FSR or FSC assemblies may be located within an input device, such as behind a device exterior, display, and so forth. A force applied to the device exterior proximate to the assembly may result in a signal indicative of the force to the assembly. The signal may be processed to determine a particular touch zone was activated. A particular action associated with the touch zone may be performed. The particular action may be based at least in part on which touch zone which was activated, a magnitude of the force, or both. For example, the particular action may include a haptic output to provide feedback to a user.
Abstract:
Devices and techniques to decrease latency in rendering a line or other feature on a display device responsive to input on a touch sensor are described. A touch sensor may detect a touch input with the touch sensor. Touch coordinates indicative of the touch input on the touch sensor are determined. The touch coordinates are mapped to display coordinates associated with the display device. Based on the display coordinates, an operating system kernel may generate a feature, such as a line, for presentation on the display.
Abstract:
An FSR assembly includes one or more active areas configured to respond to incident force by changing resistance. The FSR assembly also includes a test area constructed from the same FSR material as the active area(s), but for which the resistance remains substantially constant despite incident force on the assembly.
Abstract:
In some examples, a display includes a plurality of pixels and a plurality of light sensors. As one example, a respective light sensor may be associated with each pixel. The light sensor output can provide an accurate indication of a current optical state of each of the plurality of pixels. For instance, output from a light sensor proximate to a particular pixel may be used when determining a pixel control signal to be applied for updating the particular pixel to a next optical state. The light sensors may be located below, above, laterally adjacent to, or within one or more pixel elements of each pixel. Additionally, in some examples, one or more light sources may be provided to normalize the output from the light sensors to compensate for variations in ambient lighting and the like.
Abstract:
User input is accepted by a force sensing resistor (“FSR”) assembly, a force sensing capacitor (“FSC”) or both. The FSR or FSC assemblies may be located within an input device, such as behind a device exterior, display, and so forth. A force applied to the device exterior proximate to the assembly may result in activation of the assembly. The activation may be processed as input and used to determine and then perform a particular action. The particular action may be based at least in part on a particular portion of the assembly which has been activated, a magnitude of applied force, or both. A haptic output may be provided on activation to provide feedback to a user.