Abstract:
A stylus device is disclosed that is capable of changing its output so that it can communicate and function with a multitude of touch controllers of a computing device. In an aspect, the stylus device receives a message including the configuration information from the computing device. The configuration information may include an encoding scheme corresponding to a format for encoding data to be sent to the computing device and an operating frequency. The stylus configures itself in the encoding scheme, and communicates with the computing device using the encoding scheme. For example, the stylus device may encode data using the encoding scheme and send the data at the operating frequency.
Abstract:
Various approaches discussed herein provide a display screen that integrates both capacitive touch sensing and a light guide onto a single optically clear substrate. The substrate can be integrated into a portable device, such as an electronic reader (e-reader) device having a reflective display in order to both illuminate content displayed on the e-reader device and to provide touch sensing input to the device. The capacitive sensors can be fabricated on one side of the optically clear substrate, while the light guide can be fabricated on the opposite side of the substrate.
Abstract:
Electronic devices may include force sensitive sensors. The sensor may include a first layer of electrodes, a second layer of electrodes and a deformable dielectric material separating the first layer of electrodes and the second layer of electrodes. A conductive material may be disposed to negate capacitive effects between an object near to or touching the touch surface and the electrodes of the first layer and the electrodes of the second layer. A force applied to the sensor may be detected based at least in part on a change in capacitance between at least one electrode of first layer and at least one electrode of the second layer resulting from deformation of the deformable dielectric material. This disclosure also describes techniques for assembling electronic devices including these components.
Abstract:
An electronic device includes a stack assembly and a cover glass. The stack assembly includes an electronic paper display sub-assembly for rendering content, a front light sub-assembly for illuminating the electronic display sub-assembly, and a capacitive touch sensing sub-assembly for detecting touch inputs. The cover glass includes two apertures for the placement of control buttons for the electronic device. Prior to assembly of the electronic device, the cover glass is strengthened after the two apertures are formed so as to strengthen the interior edges of the apertures.
Abstract:
User input is accepted by a force sensing resistor (“FSR”) assembly, a force sensing capacitor (“FSC”) or both. The FSR or FSC assemblies may be located within an input device, such as behind a device exterior, display, and so forth. A force applied to the device exterior proximate to the assembly may result in activation of the assembly. The activation may be processed as input and used to determine and then perform a particular action. The particular action may be based at least in part on a particular portion of the assembly which has been activated, a magnitude of applied force, or both. A haptic output may be provided on activation to provide feedback to a user.
Abstract:
User input is accepted by a force sensing resistor (“FSR”) assembly, a force sensing capacitor (“FSC”) assembly, or both. The FSR or FSC assemblies may be located within an input device, such as behind a device exterior, display, and so forth. A force applied to the device exterior proximate to the assembly may result in a signal indicative of the force to the assembly. The signal may be processed to determine a particular touch zone was activated. A particular action associated with the touch zone may be performed. The particular action may be based at least in part on which touch zone which was activated, a magnitude of the force, or both. For example, the particular action may include a haptic output to provide feedback to a user.
Abstract:
An electronic device includes a stack assembly and a cover glass. The stack assembly includes an electronic paper display sub-assembly for rendering content, a front light sub-assembly for illuminating the electronic display sub-assembly, and a capacitive touch sensing sub-assembly for detecting touch inputs. The cover glass includes two apertures for the placement of control buttons for the electronic device. Prior to assembly of the electronic device, the cover glass is strengthened after the two apertures are formed so as to strengthen the interior edges of the apertures.
Abstract:
Various embodiments provide a capacitive touch input element that is formed of a recess in a substrate. The size and shape of the recess are chosen such that a finger of a user will not contact the bottom or minima point of the recess, thereby, requiring pressure to be applied by the finger in order to make contact. Beneath the substrate is a capacitive sensing electrode designed to concentrate an electric field toward the minima point of the recess such that the finger must make contact with the minima point to effect a change in capacitance causing the capacitive touch element to provide input to an appropriate application.
Abstract:
A stylus device is disclosed that is capable of changing its output so that it can communicate and function with a multitude of touch controllers of a computing device. In an aspect, the stylus device receives a message including the configuration information from the computing device. The configuration information may include an encoding scheme corresponding to a format for encoding data to be sent to the computing device and an operating frequency. The stylus configures itself in the encoding scheme, and communicates with the computing device using the encoding scheme. For example, the stylus device may encode data using the encoding scheme and send the data at the operating frequency.
Abstract:
A touch-sensitive display for an electronic device may include a touch sensor comprising a low birefringence substrate, ultraviolet (UV) stabilizers, and a metal mesh disposed on at least a portion of the low birefringence substrate. The low birefringence characteristic of the touch sensor substrate causes the touch sensor to exhibit low haze, high transmittance, and substantially no color, which provides improved optical properties over conventional touch sensor substrate materials used with metal mesh film. In some embodiments, the retardation value of the touch sensor substrate may be no greater than about 15 nanometers (nm). Additionally, the UV stabilizers prevent the substrate from yellowing and becoming brittle from exposure to UV radiation.