Abstract:
High-speed processing of packets to, and from, a virtualization environment can be provided while utilizing hardware-based segmentation offload and other such functionality. A hardware vendor such as a network interface card (NIC) manufacturer can enable the hardware to support open and proprietary stateless tunneling in conjunction with a protocol such as single root I/O virtualization (SR-IOV) in order to implement a virtualized overlay network. The hardware can utilize various rules, for example, that can be used by the NIC to perform certain actions, such as to encapsulate egress packets and decapsulate packets.
Abstract:
High-speed processing of packets to, and from, a virtualization environment can be provided while utilizing hardware-based segmentation offload and other such functionality. A hardware vendor such as a network interface card (NIC) manufacturer can enable the hardware to support open and proprietary stateless tunneling in conjunction with a protocol such as single root I/O virtualization (SR-IOV) in order to implement a virtualized overlay network. The hardware can utilize various rules, for example, that can be used by the NIC to perform certain actions, such as to encapsulate egress packets and decapsulate packets.
Abstract:
A network device can include packet processing circuitry to provide support for virtual functions. The packet processing circuitry can perform operations such as receiving data traffic from a virtual machine, determining an egress rule for the data traffic based on a rule table, and encapsulating the data traffic according to the egress rule.
Abstract:
High-speed processing of packets to, and from, a virtualization environment can be provided while utilizing hardware-based segmentation offload and other such functionality. A hardware vendor such as a network interface card (NIC) manufacturer can enable the hardware to support open and proprietary stateless tunneling in conjunction with a protocol such as single root I/O virtualization (SR-IOV) in order to implement a virtualized overlay network. The hardware can utilize various rules, for example, that can be used by the NIC to perform certain actions, such as to encapsulate egress packets and decapsulate packets.
Abstract:
Disclosed are various embodiments of a first computing device for obtaining an authentication credential for a cryptographic module of a second computing device. The authentication credential is obtained via a communication session with a module interface of the second computing device. Configuration data is determined for the cryptographic module based at least in part upon the authentication credential. The configuration data is transmitted to the second computing device via the communication session.
Abstract:
Systems and methods are described for managing computing resources. In one embodiment, groupings of computer resources having common firmware settings are maintained based on an abstraction firmware framework representing associations between vendor-specific firmware settings and abstracted firmware settings that provide a degree of independence from specific vendor-specific firmware settings. In response to a request for a computer resource with a specified abstracted firmware configuration, it is determined which of the groupings can support the specified abstracted firmware configuration based on at least one criterion for managing the computer resources in accordance with the abstraction firmware framework.
Abstract:
High-speed processing of packets to, and from, a virtualization environment can be provided while utilizing hardware-based segmentation offload and other such functionality. A hardware vendor such as a network interface card (NIC) manufacturer can enable the hardware to support open and proprietary stateless tunneling in conjunction with a protocol such as single root I/O virtualization (SR-IOV) in order to implement a virtualized overlay network. The hardware can utilize various rules, for example, that can be used by the NIC to perform certain actions, such as to encapsulate egress packets and decapsulate packets.
Abstract:
High-speed processing of packets to, and from, a virtualization environment can be provided while utilizing hardware-based segmentation offload and other such functionality. A hardware vendor such as a network interface card (NIC) manufacturer can enable the hardware to support open and proprietary stateless tunneling in conjunction with a protocol such as single root I/O virtualization (SR-IOV) in order to implement a virtualized overlay network. The hardware can utilize various rules, for example, that can be used by the NIC to perform certain actions, such as to encapsulate egress packets and decapsulate packets.
Abstract:
Systems and methods are described for managing computing resources. In one embodiment, groupings of computer resources having common firmware settings are maintained based on an abstraction firmware framework representing associations between vendor-specific firmware settings and abstracted firmware settings that provide a degree of independence from specific vendor-specific firmware settings. In response to a request for a computer resource with a specified abstracted firmware configuration, it is determined which of the groupings can support the specified abstracted firmware configuration based on at least one criterion for managing the computer resources in accordance with the abstraction firmware framework.
Abstract:
Customers in a multi-tenant environment can obtain energy consumption information for a set of resources or other computing components used by those customers, including time-accurate accounting for various components of those resources utilized on behalf of the customer. A customer can also have the ability to specify how the resources are to be operated when used for the customer, in order to manage the amount of energy consumption. The accounting can be performed even when the resources are shared among multiple users or entities. Various hardware components or agents can be used to provide detailed energy consumption information for those components that is associated with a particular customer. The information can be used not only for accounting and monitoring purposes, but also to make dynamic adjustments based on various changes in usage, energy consumption, or other such factors.