Abstract:
Disclosed is an isolated antigen binding protein, such as but not limited to, an antibody or antibody fragment. Also disclosed are pharmaceutical compositions and medicaments comprising the antigen binding protein, isolated nucleic acid encoding it, vectors, host cells, and hybridomas useful in methods of making it. In some embodiments the antigen binding protein comprises one to twenty-four pharmacologically active chemical moieties conjugated thereto, such as a pharmacologically active polypeptide.
Abstract:
Disclosed is an isolated antigen binding protein, such as but not limited to, an antibody or antibody fragment. Also disclosed are pharmaceutical compositions and medicaments comprising the antigen binding protein, isolated nucleic acid encoding it, vectors, host cells, and hybridomas useful in methods of making it. In some embodiments the antigen binding protein comprises one to twenty-four pharmacologically active chemical moieties conjugated thereto, such as a pharmacologically active polypeptide.
Abstract:
The present invention provides a means for increasing the serum half-life of a selected biologically active agent by utilizing transthyretin (TTR) as a fusion partner with a biologically active agent. Specifically, the present invention provides substantially homogenous preparations of TTR (or a TTR variant)-biologically active agent fusions and PEG-TTR (PEG-TTR variant)-biologically active agent fusions. As compared to the biologically active agent alone, the TTR-biologically active agent fusion and/or PEG-TTR-biologically active agent fusion has substantially increased serum half-life.
Abstract:
Disclosed is a process for preparing a pharmacologically active compound, in which at least one internal conjugation site of an Fc domain sequence is selected that is amenable to conjugation of an additional functional moiety by a defined conjugation chemistry through the side chain of an amino acid residue at the conjugation site. An appropriate amino acid residue for conjugation may be present in a native Fc domain at the conjugation site or may be added by insertion (i.e., between amino acids in the native Fc domain) or by replacement (i.e., removing amino acids and substituting different amino acids). In the latter case, the number of amino acids added need not correspond to the number of amino acids removed from the previously existing Fc domain. This technology may be used to produce useful compositions of matter and pharmaceutical compositions containing them. A DNA encoding the inventive composition of matter, an expression vector containing the DNA, and a host cell containing the expression vector are also disclosed.
Abstract:
Disclosed is a composition of matter involving a recombinant fusion protein comprising a a pharmacologically active protein partner, and a small pharmacologically inactive protein domain partner of human origin, such as but not limited to, a 10th fibronectin III domain, a SH3 domain, a SH2 domain, a CH2 domain of IgG1, a PDZ domain, a thrombospondin repeat domain, an ubiquitin domain, a leucine-rich repeat domain, a villin headpiece HP35 domain, a villin headpiece HP76 domain, or a fragment or modification of any of these. Also disclosed are nucleic acids (e.g., DNA constructs) encoding the fusion protein, expression vectors and recombinant host cells for expression of the fusion protein, and pharmaceutical compositions containing the recombinant fusion protein and a pharmaceutically acceptable carrier, and method of producing a pharmacologically active recombinant fusion protein.
Abstract:
Disclosed is a process for preparing a pharmacologically active compound, in which at least one internal conjugation site of an Fc domain sequence is selected that is amenable to conjugation of an additional functional moiety by a defined conjugation chemistry through the side chain of an amino acid residue at the conjugation site. An appropriate amino acid residue for conjugation may be present in a native Fc domain at the conjugation site or may be added by insertion (i.e., between amino acids in the native Fc domain) or by replacement (i.e., removing amino acids and substituting different amino acids). In the latter case, the number of amino acids added need not correspond to the number of amino acids removed from the previously existing Fc domain. This technology may be used to produce useful compositions of matter and pharmaceutical compositions containing them. A DNA encoding the inventive composition of matter, an expression vector containing the DNA, and a host cell containing the expression vector are also disclosed.
Abstract:
Disclosed is an isolated immunoglobulin. Also disclosed are pharmaceutical compositions and medicaments comprising the immunoglobulin, isolated nucleic acid encoding it, vectors, host cells, useful in methods of making it. In some embodiments the immunoglobulin comprises one to twenty-four pharmacologically active chemical moieties conjugated thereto, such as a pharmacologically active polypeptide.
Abstract:
Disclosed is an isolated antigen binding protein, such as but not limited to, an antibody or antibody fragment. Also disclosed are pharmaceutical compositions and medicaments comprising the antigen binding protein, isolated nucleic acid encoding it, vectors, host cells, and hybridomas useful in methods of making it. In some embodiments the antigen binding protein comprises one to twenty-four pharmacologically active chemical moieties conjugated thereto, such as a pharmacologically active polypeptide.
Abstract:
The present invention concerns antigen binding proteins that bind TL1A, including bispecific antigen binding proteins (e.g., antibodies) to TL1A and TNF-α. Such bispecific antibodies can be in a tetrameric immunoglobulin format, in which one heavy chain-light chain pair of the antibody is directed to TL1A and the other to TNF-α. The bispecific antigen binding proteins may also be comprised in an IgG-scFv fusion, in which a conventional tetrameric antibody directed to one antigen is fused to a pair of single chain Fv units directed to the other. The bispecific antigen binding protein may also be comprised in an IgG-Fab fusion, in which a Fab molecule that binds to one antigen is fused to each heavy chain of a conventional tetrameric antibody directed to the other antigen. The invention further relates to uses of the anti-TL1A binding proteins and anti-TL1A/anti-TNF-α antigen binding proteins, and pharmaceutical formulations thereof.