摘要:
Methods and systems for electrochemical reduction of carbon dioxide using advanced aromatic amine heterocyclic catalysts are disclosed. A method for electrochemical reduction of carbon dioxide may include, but is not limited to, steps (A) to (C). Step (A) may introduce water to a first compartment of an electrochemical cell. Said first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of said electrochemical cell. Said second compartment may include a solution of an electrolyte, a catalyst, and a cathode. Said catalyst may include at least two aromatic amine heterocycles that are at least one of (a) fused or (b) configured to become electronically conjugated upon one electron reduction. Step (C) may apply an electrical potential between said anode and said cathode in said electrochemical cell sufficient for said cathode to reduce said carbon dioxide to a product mixture.
摘要:
Methods and systems for electrochemical production of butanol are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte, a catalyst, and a cathode. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient for the cathode to reduce the carbon dioxide to a product mixture. Step (D) may separate butanol from the product mixture.
摘要:
The invention relates to various embodiments of an environmentally beneficial method for reducing carbon dioxide. The methods in accordance with the invention include electrochemically or photoelectrochemically reducing the carbon dioxide in a divided electrochemical cell that includes an anode, e.g., an inert metal counterelectrode, in one cell compartment and a metal or p-type semiconductor cathode electrode in another cell compartment that also contains an aqueous solution of an electrolyte and a catalyst of one or more substituted or unsubstituted aromatic amines to produce therein a reduced organic product.
摘要:
A method for the production of an oxide layer, involving oxidizing a metal surface, wherein the metal surface is electrically connected to an electronic control unit (ECU); wherein the metal oxide layer produced has an amount of metal present in said metal oxide layer that is higher than that present in a metal oxide layer produced by oxidizing the metal surface in the absence of the ECU; or oxidizing an oxidizable non-metallic conductive surface, wherein the oxidizable non-metallic conductive surface is electrically connected to an electronic control unit (ECU); wherein the oxide layer produced is denser than that produced by oxidizing the oxidizable non-metallic conductive surface in the absence of the ECU; and the metal oxide or oxide layers produced thereby.
摘要:
The invention relates to various embodiments of an environmentally beneficial method for reducing carbon dioxide. The methods in accordance with the invention include electrochemically or photoelectrochemically reducing the carbon dioxide in a divided electrochemical cell that includes an anode, e.g., an inert metal counterelectrode, in one cell compartment and a metal or p-type semiconductor cathode electrode in another cell compartment that also contains an aqueous solution of an electrolyte and a catalyst of one or more substituted or unsubstituted aromatic amines to produce therein a reduced organic product.
摘要:
The invention relates to various embodiments of an environmentally beneficial method for reducing carbon dioxide. The methods in accordance with the invention include electrochemically or photoelectrochemically reducing the carbon dioxide in a divided electrochemical cell that includes an anode, e.g., an inert metal counterelectrode, in one cell compartment and a metal or p-type semiconductor cathode electrode in another cell compartment that also contains an aqueous solution of an electrolyte and a catalyst of one or more substituted or unsubstituted aromatic amines to produce therein a reduced organic product.
摘要:
Methods and systems for electrochemical production of butanol are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte, a catalyst, and a cathode. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient for the cathode to reduce the carbon dioxide to a product mixture. Step (D) may separate butanol from the product mixture.
摘要:
Crystalline solids including Zintl anions have been synthesized by an electrolytic process that uses a cathode whose composition is an alloy including the elements forming the Zintl ion and an electrolyte that comprises a solvent that is basic and polar, such as ethylenediamine, and a supporting electrolyte, advantageously organic, that provides a suitable cation for the Zintl anion. Specific examples of solids that have been crystallized include tetraphenylphosphonium gold telluride, tetraphenylphosphonium gallium telluride, and tetrapropylammonium antimony telluride.
摘要:
A method of producing metal alloy nanoparticles comprising forming a cyanosol by reacting a mixture of a chlorometallate complex and a cyanometallate complex, spin-coating the mixture onto a substrate to form a film, and sintering the film to form metal alloy nanoparticles.
摘要:
Methods and systems for electrochemical conversion of carbon dioxide to carboxylic acids, glycols, and carboxylates are disclosed. A method may include, but is not limited to, steps (A) to (D). Step (A) may introduce water to a first compartment of an electrochemical cell. The first compartment may include an anode. Step (B) may introduce carbon dioxide to a second compartment of the electrochemical cell. The second compartment may include a solution of an electrolyte and a cathode. Step (C) may apply an electrical potential between the anode and the cathode in the electrochemical cell sufficient to reduce the carbon dioxide to a carboxylic acid intermediate. Step (D) may contact the carboxylic acid intermediate with hydrogen to produce a reaction product.