摘要:
Disclosed is a process for improving the efficiency of a combined-cycle power generation plant and desalination unit. The process includes supplying exhaust gases from a gas turbine set used to generate electrical power to a heat recovery steam generator (HRSG) and then directing the steam from the HRSG to a steam turbine set. Salinous water is supplied into an effect of the desalination unit. Steam exhausted from the steam turbine set is utilized in the effect of the desalination unit to produce a distillate vapor and brine from the effect by heat exchange. Additionally, steam is introduced steam from at least one additional heat source from the combined-cycle power generation plant to the effect to increase the mass flow rate of steam into the effect. In one embodiment, the additional heat source is an intercooler heat exchanger. Heated water from the intercooler heat exchanger is provided to a reduced atmosphere flash tank, and the steam flashed in the flash tank is provided to the effect.
摘要:
Disclosed is a process for improving the efficiency of a combined-cycle power generation plant and desalination unit. The process includes supplying exhaust gases from a gas turbine set used to generate electrical power to a heat recovery steam generator (HRSG) and then directing the steam from the HRSG to a steam turbine set. Salinous water is supplied into an effect of the desalination unit. Steam exhausted from the steam turbine set is utilized in the effect of the desalination unit to produce a distillate vapor and brine from the effect by heat exchange. Additionally, steam is introduced steam from at least one additional heat source from the combined-cycle power generation plant to the effect to increase the mass flow rate of steam into the effect. In one embodiment, the additional heat source is an intercooler heat exchanger. Heated water from the intercooler heat exchanger is provided to a reduced atmosphere flash tank, and the steam flashed in the flash tank is provided to the effect.
摘要:
A device, such as an absorption chiller sub-system, is provided. The absorption chiller sub-system can include an evaporator and an absorber. The evaporator can be configured to receive a liquid first working fluid and to produce first working fluid vapor. The absorber can be configured to receive and combine first working fluid vapor and a second working fluid, for example, so as to release thermal energy. A divider having opposing first and second sides in respective fluid communication with the evaporator and the absorber can also be included. The divider can be configured to allow first working fluid vapor to pass therethrough between the first and second sides and to inhibit movement of liquid first working fluid therethrough between the first and second sides. Associated systems and methods are also provided.
摘要:
A combined cycle power plant includes a gas turbine, a condensing stage, a steam turbine, and a heat recovery steam generator (HRSG). The HRSG is configured to generate steam for driving the steam turbine in response to heat transferred from exhaust gas received from the gas turbine at a first temperature and to transmit the exhaust gas to the condensing turbine at a second temperature that is lower than the first temperature.
摘要:
The present invention provides a water self-sufficient turbine system comprising: (a) a combustion turbine comprising a combustion chamber disposed between an upstream compressor coupled to a downstream turbine section; (b) a water recovery unit configured to contact a first liquid desiccant with a water-rich exhaust gas stream produced by the combustion turbine, and produce a water-enriched liquid desiccant and a water-depleted exhaust gas stream; and (c) a desiccant regenerator unit configured to contact the water-enriched liquid desiccant with hot compressed air to separate water from the water-enriched liquid desiccant to provide water-rich compressed air and to regenerate the first liquid desiccant; wherein the combustion turbine is configured to supply hot compressed air to the desiccant regenerator unit and receive water-rich compressed air from the desiccant regenerator unit, and wherein the desiccant regenerator unit is configured to supply the first liquid desiccant to the water recovery unit.
摘要:
The present invention provides a water self-sufficient turbine system comprising: (a) a combustion turbine comprising a combustion chamber disposed between an upstream compressor coupled to a downstream turbine section; (b) a water recovery unit configured to contact a first liquid desiccant with a water-rich exhaust gas stream produced by the combustion turbine, and produce a water-enriched liquid desiccant and a water-depleted exhaust gas stream; and (c) a desiccant regenerator unit configured to contact the water-enriched liquid desiccant with hot compressed air to separate water from the water-enriched liquid desiccant to provide water-rich compressed air and to regenerate the first liquid desiccant; wherein the combustion turbine is configured to supply hot compressed air to the desiccant regenerator unit and receive water-rich compressed air from the desiccant regenerator unit, and wherein the desiccant regenerator unit is configured to supply the first liquid desiccant to the water recovery unit.
摘要:
A system, such as a thermal energy management system, is provided. The system can include an absorption module and an evaporation module. The absorption module can include at least two absorption chambers, each absorption chamber being configured to receive liquid absorbent. The evaporation module can be in independent selective fluid communication with each of the absorption chambers, and can be configured to receive and cause therein evaporation of a refrigerant.
摘要:
An oxidizer that is usable with a fuel cell includes a catalyst, an inlet to communicate an oxidant flow, an injection tube to communicate an anode exhaust flow, a mixing tube and a divergent nozzle. The injection tube communicates the anode exhaust flow from the fuel cell into the oxidizer to produce a combined flow in which the anode exhaust flow is oriented in substantially the same direction as the oxidant flow and surrounded by the oxidant flow. The mixing tube is connected to the inlet to receive the combined flow and mix the oxidant flow and the anode exhaust flow mix together to produce a mixed flow. A cross-sectional flow area of the mixing tube is sized to prevent flashback. The divergent nozzle communicates the mixed flow to the catalyst.
摘要:
An absorption chiller system is provided. The system includes an evaporator, an absorber, a divider, a recirculating loop, and a primary heater. The evaporator includes a first working fluid inlet and a first working fluid outlet. The absorber includes a second working fluid inlet and a second working fluid outlet. The divider has opposing first and second sides, wherein the first side is in fluid communication with the evaporator and the second side is in fluid communication with the absorber. The recirculating loop connects the first working fluid outlet back to the evaporator, and the primary heater is disposed in thermal communication with the recirculating loop.
摘要:
A system, such as a thermal energy management system, is provided. The system can include an absorption module and an evaporation module. The absorption module can include at least two absorption chambers, each absorption chamber being configured to receive liquid absorbent. The evaporation module can be in independent selective fluid communication with each of the absorption chambers, and can be configured to receive and cause therein evaporation of a refrigerant.