摘要:
This invention provides for a technique for selectively off-loading traffic from congested sub-regions of a network to more lightly-loaded regions by making use of Multiprotocol Label Switching (MPLS). For each network element, an Interior Gateway Protocol (IGP) routing is employed to provide re-routing and to identify congested links caused by re-routed trunks for each single failure. The re-routed traffic is then analyzed and alternate Label Switched Paths (LSPs) are identified for such traffic trunks so that the traffic is directed to the alternate LSPs during the single failure event.
摘要:
This invention provides for a technique for selectively off-loading traffic from congested sub-regions of a network to more lightly-loaded regions by making use of Multiprotocol Label Switching (MPLS). For each network element, an Interior Gateway Protocol (IGP) routing is employed to provide re-routing and to identify congested links caused by re-routed trunks for each single failure. The re-routed traffic is then analyzed and alternate Label Switched Paths (LSPs) are identified for such traffic trunks so that the traffic is directed to the alternate LSPs during the single failure event.
摘要:
This invention provides for a technique for selectively off-loading traffic from congested sub-regions of a network to more lightly-loaded regions by making use of Multiprotocol Label Switching (MPLS). For each network element, an Interior Gateway Protocol (IGP) routing is employed to provide re-routing and to identify congested links caused by re-routed trunks for each single failure. The re-routed traffic is then analyzed and alternate Label Switched Paths (LSPs) are identified for such traffic trunks so that the traffic is directed to the alternate LSPs during the single failure event.
摘要:
This invention provides for a technique for selectively off-loading traffic from congested sub-regions of a network to more lightly-loaded regions by making use of Multiprotocol Label Switching (MPLS). For each network element, an Interior Gateway Protocol (IGP) routing is employed to provide re-routing and to identify congested links caused by re-routed trunks for each single failure. The re-routed traffic is then analyzed and alternate Label Switched Paths (LSPs) are identified for such traffic trunks so that the traffic is directed to the alternate LSPs during the single failure event.
摘要:
An architecture, design, and realization for providing Quality of Service (QoS) to Internet Protocol (IP) networks based on a three-class differentiated service scheme where the service provider uses a resource management system and a schedule optimizer to enable the optimal use of bandwidth and buffer resources at each node along the various links between the ingress and egress points in a network. The resource reservation system checks to determine whether sufficient bandwidth resources are available along the path requested by the customer for a particular class. The schedule optimizer ensures that sufficient buffer resource allocations and parameter settings are made to optimally reach the predetermined QoS criteria for each of the three classes. The system also contains a mechanism supporting resource reservations providing additional resources along alternative paths if the selected path links fail in the network.
摘要:
An architecture, design, and realization for providing Quality of Service (QoS) to Internet Protocol (IP) networks based on a three-class differentiated service scheme where the service provider uses a resource management system and a schedule optimizer to enable the optimal use of bandwidth and buffer resources at each node or router along the various links between the ingress and egress points in a network. The resource reservation system checks to determine if sufficient bandwidth resources are available along the path requested by the customer for a particular class. The schedule optimizer ensures that sufficient buffer resource allocations and parameter settings are made to optimally reach the predetermined QoS criteria for each of the three classes. The system also contains a mechanism supporting resource reservations providing additional resources along alternative paths if the selected path links fail in the network.
摘要:
An architecture, design, and realization for providing Quality of Service (QoS) to Internet Protocol (IP) networks based on a three-class differentiated service scheme where the service provider uses a resource management system and a schedule optimizer to enable the optimal use of bandwidth and buffer resources at each node or router along the various links between the ingress and egress points in a network. The resource reservation system checks to determine if sufficient bandwidth resources are available along the path requested by the customer for a particular class. The schedule optimizer ensures that sufficient buffer resource allocations and parameter settings are made to optimally reach the predetermined QoS criteria for each of the three classes. The system also contains a mechanism supporting resource reservations providing additional resources along alternative paths if the selected path links fail in the network.
摘要:
A method and system for dynamically triggering flow-based quality of service shortcuts through a router is disclosed. The method further includes the steps of receiving a data packet at a router, determining whether a shortcut has been set up for a data flow to which said packet belongs, checking the status of an onset trigger counter when no shortcut exists, and when a current value of said onset trigger exceeds an onset trigger value, setting up a new shortcut for said data packet belonging to said data flow. The method of the present invention includes a dynamic system for adjusting state variable to control the number of shortcuts in existence and the adjusting the shortcut set up rate for optimal router switching efficiency.
摘要:
A method and system for providing joint IP/Optical Layer restoration mechanisms for the IP over Optical Layer architecture, particularly for protecting against router failure within such architecture, includes any one of plural node elements participating in the detection and restoration of the joint IP/Optical Layer architecture upon the failure of a router in one of the nodes. The plural node elements may include, but are not limited to, one of plural routers and an optical cross-connect.