摘要:
A gas sampling device, analyte detection system, and methods for identifying a vapor or aerosol analyte suspended in a gas are described. The gas sampling device comprises a chamber having a gas inlet port, a substrate, one or more gas outlet ports near the substrate, and a pump. The gas outlet ports direct airflow to a reflecting substrate coated with a spectroscopically-transparent material. Analytes are deposited on the coated substrate through impaction, for massive aerosols, and diffusion through the viscous boundary layer, for vapor analytes. In one analyte detection system, a spectroscopic instrument is positioned behind a window opposite the substrate to interrogate the coated substrate surface as analytes are collected. An alternate detection system combines the gas sampling device with a detector in fluid communication with the gas outlet ports from the chamber, wherein the substrate is used as an analyte concentrator.
摘要:
A system and method are used to search for a thermal target from a moving aerial platform. The system includes a computer corrected to a wide field-of-view thermal imager, a narrow field-of-view thermal imager, a global navigation satellite system receiver, and an inertial navigation system. The wide field-of-view thermal imager acouires multiple images as the wide field-of-view thermal imager moves relative to a search area. Each point of each imaoe is correlated to a stationary position within the search area. The computer is configured to independently time-average the thermal signal amplitude emanating from each stationary sector in the search area imaged bv the wide field-of-view thermal imager. and direct the narrow field-of-view thermal imager to point to the stationary position of the sector of interest and display a thermal imaoe associated with the sector of interest to a user.
摘要:
Apparatus and method for cleaning air. An air cleaner includes a housing that defines an airflow pathway and a catalytic reactor having a catalyst secured on a porous substrate that is disposed transverse to the airflow pathway. Preferably, the catalyst includes a light activated oxidizing photocatalyst or a thermally activated oxidizing catalyst. A photocatalytic reactor will include a light source directed at a light activated oxidizing photocatalyst, such as TiO2 particles or a binary oxide particle species, which is disposed on the porous substrate. Most preferably, a metal catalyst is disposed on the photocatalyst particles at a concentration or loading between about 0.01 wt % and about 5 wt %. The air cleaner may further comprise an adsorption matrix upstream of the catalytic reactor, optionally in combination with a heater. A particulate filter and/or an electrostatic precipitator may also be disposed upstream of the adsorption matrix and the catalytic reactor.
摘要:
A method, computer program product and system for analyzing multispectral images from a plurality of regions of birefringent material, such as a polymer film, using polarized light and a corresponding polar analyzer to identify differential strain in the birefringent material. For example, the birefringement material may be low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene, polyethylene terephthalate (PET), polyvinyl chloride (PVC), polyvinylidene chloride, polyester, nylon, or cellophane film. Optionally, the method includes generating a real-time quantitative strain map.
摘要:
In one embodiment, an efficient method is presented for aerial searching for a small thermal target in a search area, such as a single person in open water, using two thermal imagers or “cameras” coupled with a computer which presents data from the system to a human user for inspection. One of the two thermal imagers has a very wide field of view (WFOV) fixed forward of or below the aircraft. The other, narrow field-of-view (NFOV) imager has a high zoom capability but its field of view can be reoriented to geo-point to a location on command. The WFOV thermal imager collects images rapidly so that no individual image is blurred due to changes in the field of view (FOV) on the time-scale of the image capture. The images are geo-registered using information from a global positioning receiver as well as the current altitude, roll, pitch, yaw, and velocity of the aircraft. As the aircraft moves and the FOV in the WFOV thermal imager changes, the computer averages the amplitude of the thermal radiation detected from each geo-registered position on the water below using the captured images continuously and in real time. The signal from a thermal target in the water is integrated while the background is relatively suppressed, enhancing the signal-to-noise ratio for the target as the square root of the number of images collected in which the target appears. A target which is much smaller than the area covered by a single pixel or that even has a thermal contrast below the noise equivalent temperature difference of the WFOV thermal imager can be detected. Thermal anomalies which have a signal commensurate in amplitude and spatial extent to the object of the search are selected by the system and their coordinates are relayed to the NFOV thermal imager. The NFOV thermal imager zooms into these locations sequentially and presents the image information to the human user who can then either reject or verify that the subject being imaged is the object of the search.