Abstract:
A device providing temporary pairing for wireless devices may include a memory and at least one processor configured to receive a request to temporarily pair with a wireless device. The at least one processor may be further configured to pair with the wireless device, wherein the pairing comprises generating a link key for connecting to the wireless device. The at least one processor may be further configured to connect to the wireless device using the link key. The at least one processor may be further configured to initiate a timer upon disconnecting from the wireless device. The at least one processor may be further configured to automatically and without user input, delete the link key when the timer reaches a timeout value without having reconnected to the wireless device using the link key.
Abstract:
A system and method for routing communication to a common audio output device connected to each of two or more audio signal source devices. For each of the two or more audio signal source devices, a set of inputs are assessed. The set of inputs include: an operational state of the audio signal source device, an activity the audio signal source device, an audio-producing application being executed by the audio signal source device, and a degree of user activity with the audio-producing application being executed by the audio signal source. At a point in time, an audio routing score is generated for each of the two or more audio signal source devices according to a weighted calculation of the set of inputs based on the assessing. Finally, an audio signal routing decision is made, to route an audio signal from one of the two or more audio signal source devices to the audio output device, based on the audio routing score for each of the two or more audio signal source devices.
Abstract:
A housing has a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver is inside the bud portion. Electronic circuitry inside the housing includes a wireless communications interface to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery as a power source for the electronic circuitry is located inside a cavity of the stem portion. Other embodiments are also described and claimed.
Abstract:
A device providing concurrent audio streaming to multiple wireless audio output devices may include at least one processor configured to receive a user selection of at least two paired audio output devices. The at least one processor may be further configured to connect to each of the at least two of the paired audio output devices. The at least one processor may be further configured to synchronize at least one audio output synchronization parameter across each of the at least two of the paired audio output devices. The at least one processor may be further configured to concurrently stream a respective audio stream to each of the at least two of the paired audio output devices.
Abstract:
The wireless earphone (1) comprises a housing (2) having a bud portion abutting an elongated stem portion. The bud portion is to fit within an ear. The bud portion has a primary sound outlet (5) at its far end that is to be inserted into an outer ear canal, and abuts the stem portion at its near end. A speaker driver (6) is inside the bud portion. Electronic circuitry (7,24) inside the housing (2) includes a wireless communications interface (4) to receive audio content over-the-air and in response provides an audio signal to the speaker driver. A rechargeable battery (3) as a power source for the electronic circuitry is located inside a cavity of the stem portion.
Abstract:
A system and method for peer-to-peer communications is disclosed. A first wireless device receives a message from a second wireless device identifying communication requirements of a point-to-point communication involving the second wireless device. The first wireless device determines whether the second wireless device's communication requirements can be satisfied based on communication resources already committed for other communications. When the communication requirements of the second wireless device can be satisfied, the first wireless device generates a time sharing schedule to be used by the first and second wireless devices based on the already-committed communication requirements and the second device's communication requirements. The time sharing schedule may include a first portion for broadcast communication among a group of devices to which the first and second wireless devices belong, and a second portion for the point-to-point communications of the second wireless devices.
Abstract:
Providing supplemental audio signal processing for a Bluetooth audio link. A wireless device may establish a bi-directional wireless audio link with a Bluetooth device. An indication may be received that the Bluetooth device supports audio signal processing. A device type of the Bluetooth device may be determined. The wireless device may perform one or more audio signal processing operations on audio data transmitted to and/or received from the Bluetooth device via the bi-directional wireless audio link. The audio signal processing operations may be selected based on the device type of the Bluetooth device, and may be performed in addition to audio signal processing operations which may be performed on the audio data by the Bluetooth device.
Abstract:
A source device executing the application can transmit the streaming content to the playback device. The size of the buffer can be changed during the playback of streaming content. To perform the change seamlessly, embodiments can cause the application to provide the streaming content at an increased or decreased rate, depending on how the size of the playback buffer is to be changed. The new buffer size (i.e., smaller or larger amount) can provide improved playback of the streaming content, e.g., based on a latency-reliability tradeoff as determined using various factors (e.g., quality of connection between the devices). The changed rate for providing the streaming content can be achieved by slowing down or speeding up a clock signal that is provided to the application.
Abstract:
A source device can transmit initial streaming content to a playback device (e.g., wireless ear buds) using first settings and measure playback performance of the content at a plurality of times. The measured performance values can relate to a quality of communication of the initial streaming content between the source device and the playback device, e.g., relating to packet loss, retransmission rates and patterns, fluctuations in a playback (jitter) buffer, and/or other values. The measured performance values can be used to determine one or more second settings to be used for a playback of subsequent streaming content between the source device and the playback device. In this manner, each source device can account for variations in communication behavior specific to a user (e.g., due to differences in body type as electromagnetic waves travel through the body when a source device is in a pocket).
Abstract:
A host device communicating with a plurality of accessory devices transmits audio data packets via a broadcast channel to the plurality of accessory devices. When one of the plurality of accessory devices determines an audio data packet has not been received, the accessory device sends a negative-acknowledgement signal (NACK) via a unicast channel. The NACK indicates that the at least one of the accessory devices did not receive at least one audio data packet. The host device retransmits the at least one audio data packet indicated as not being received via the broadcast channel to the plurality of accessory devices. Other aspects are also described and claimed.