Abstract:
Embodiments of the present disclosure provide systems, methods, and computer-readable medium for pairing two proximate devices. An advertisement message associated with an accessory device may be received by a host device (e.g., a smart phone). The advertisement message may be communicated using a Bluetooth protocol (e.g., BLE). Payload data may be extracted from the advertisement message and utilized to obtain a media asset (e.g., an image, a video, an icon, etc.) associated with the accessory device. The media asset may be presented via a user interface at the host device. Input may be received indicating a request and/or an approval to perform a pairing procedure with the accessory device. In accordance with the input, the host device may execute the pairing procedure with the accessory device.
Abstract:
The embodiments set forth herein disclose techniques for enabling a user device to seamlessly establish a secure, high-bandwidth wireless connection with a vehicle accessory system to enable the user device to wirelessly stream user interface (UI) information to the vehicle accessory system. To implement this technique, a lower-bandwidth wireless technology (e.g., Bluetooth) is used as an initial means for establishing a Wi-Fi pairing between the user device and the vehicle accessory system. Wi-Fi parameters associated with a Wi-Fi network provided by the vehicle accessory system can be communicated to the user device using the lower-bandwidth wireless technology. A secure Wi-Fi connection can then be established between the user device and the vehicle accessory system using the provided Wi-Fi parameters. The embodiments also disclose a technique for enabling the user device to automatically reconnect with the vehicle accessory system in a seamless manner (e.g., when returning to a vehicle).
Abstract:
The disclosed embodiments provide a system that facilitates communication with a first electronic device from a second electronic device. During operation, the system establishes a peer-to-peer connection between the first electronic device and the second electronic device on a first physical network interface. Next, the system uses the peer-to-peer connection to obtain, on the second electronic device, a first set of network-interface capabilities for the first electronic device. Finally, the system switches the peer-to-peer connection to a second physical network interface based on at least one of the first set of network-interface capabilities and one or more characteristics associated with the peer-to-peer connection.
Abstract:
Methods and apparatus for reduction of interference between a plurality of wireless interfaces. In one exemplary embodiment, a device having a first (e.g., Wi-Fi) interface and a second (e.g., Bluetooth) interface monitors interference between its interfaces. A reduction in transmit power of the Wi-Fi module causes a disproportionately larger reduction in undesirable interference experienced at the Bluetooth antennas. For example, when the Bluetooth interface detects interference levels above acceptable thresholds, the Wi-Fi interface adjusts operation of one or more of its transmit chains based on various conditions such as duty cycle, Received Signal Strength Indication (RSSI), etc. Various embodiments of the present invention provide simultaneous operation of WLAN and PAN interfaces, without requiring time division coexistence, by reducing power on a subset of interfering antennas.
Abstract:
Methods and apparatus for selectively switching one or more antennas in a multiple-input, multiple-output (MIMO) antenna array so as to mitigate interference with another RF interface within the same space-constrained device, based on radio frequency isolation. In one embodiment, the MIMO interface comprises a WLAN interface having a 2×2 or 3×3 array of antennae which are placed in a wireless device in an asymmetric fashion with respect to the antenna of the second interface, and the other interface comprises a PAN (e.g., Bluetooth) interface operating in an overlapping frequency band (e.g., ISM band). When both interfaces are operating, interference is mitigated through selectively switching off one or more of the MIMO antennae, and using the remaining antenna(e) having the best isolation from the Bluetooth antennae. This approach allows simultaneous operation of both interferences without significant degradation to user experience or the operation of either interface, and may also provide power savings critical to mobile device battery longevity.
Abstract:
Techniques for routing communication to a common audio output device connected multiple audio signal source devices are disclosed. For each of audio signal source devices, a set of inputs are assessed. The set of inputs can include: an operational state of the audio signal source device, an interaction with the audio signal source device, an audio-producing application being executed by the audio signal source device, or a degree of user interaction with the audio-producing application. At a point in time, an audio routing score is generated for each of the audio signal source devices according to a weighted calculation of the set of inputs based on the assessing. Finally, an audio signal routing decision is made, to route an audio signal from one of the audio signal source devices to the audio output device, based on the audio routing score for each of the audio signal source devices.
Abstract:
In order to reduce the power consumption of a receiving electronic device, received advertising beacons may be filtered so that the receiving electronic device selectively transitions from a power-saving mode to a normal operating mode. For example, the receiving electronic device may receive a beacon with advertising information for a transmitting electronic device. If the advertising information is changed relative to a previous version of the advertising information for the transmitting electronic device, the receiving electronic device may transition from the power-saving mode to the normal operating mode. In this way, the receiving electronic device may ‘wake up’ if it receives an advertisement that it wants to act on, such as advertisements for: file sharing, wireless streaming of information, proximity pairing and/or continuity of a user experience with an application when the user transitions from the transmitting electronic device to the receiving electronic device.
Abstract:
In order to reduce the power consumption of a receiving electronic device, received advertising beacons may be filtered so that the receiving electronic device selectively transitions from a power-saving mode to a normal operating mode. For example, the receiving electronic device may receive a beacon with advertising information for a transmitting electronic device. If the advertising information is changed relative to a previous version of the advertising information for the transmitting electronic device, the receiving electronic device may transition from the power-saving mode to the normal operating mode. In this way, the receiving electronic device may ‘wake up’ if it receives an advertisement that it wants to act on, such as advertisements for: file sharing, wireless streaming of information, proximity pairing and/or continuity of a user experience with an application when the user transitions from the transmitting electronic device to the receiving electronic device.
Abstract:
Methods and apparatus for mitigation of radio interference between two or more wireless concurrently operating interfaces in a wireless device having an aggressive form factor. In one embodiment, the interfaces are used for different tasks (e.g., WLAN for data and PAN for human interface devices), and the device includes logic configured to evaluate the priority of the tasks and adjust the operation of one or more of the interfaces accordingly.
Abstract:
Methods and apparatus for selectively switching one or more antennas in a multiple-input, multiple-output (MIMO) antenna array so as to mitigate interference with another RF interface within the same space-constrained device, based on radio frequency isolation. In one embodiment, the MIMO interface comprises a WLAN interface having a 2×2 or 3×3 array of antennae which are placed in a wireless device in an asymmetric fashion with respect to the antenna of the second interface, and the other interface comprises a PAN (e.g., Bluetooth) interface operating in an overlapping frequency band (e.g., ISM band). When both interfaces are operating, interference is mitigated through selectively switching off one or more of the MIMO antennae, and using the remaining antenna(e) having the best isolation from the Bluetooth antennae. This approach allows simultaneous operation of both interferences without significant degradation to user experience or the operation of either interface, and may also provide power savings critical to mobile device battery longevity.