Abstract:
A handheld communication device is used to capture video streams and generate a multiplexed video stream. The handheld communication device has at least two cameras facing in two opposite directions. The handheld communication device receives a first video stream and a second video stream simultaneously from the two cameras. The handheld communication device detects a speech activity of a person captured in the video streams. The speech activity may be detected from direction of sound or lip movement of the person. Based on the detection, the handheld communication device automatically switches between the first video stream and the second video stream to generate a multiplexed video stream. The multiplexed video stream interleaves segments of the first video stream and segments of the second video stream. Other embodiments are also described and claimed.
Abstract:
A handheld communication device is used to capture video streams and generate a multiplexed video stream. The handheld communication device has at least two cameras facing in two opposite directions. The handheld communication device receives a first video stream and a second video stream simultaneously from the two cameras. The handheld communication device detects a speech activity of a person captured in the video streams. The speech activity may be detected from direction of sound or lip movement of the person. Based on the detection, the handheld communication device automatically switches between the first video stream and the second video stream to generate a multiplexed video stream. The multiplexed video stream interleaves segments of the first video stream and segments of the second video stream. Other embodiments are also described and claimed.
Abstract:
A handheld communication device is used to capture video streams and generate a multiplexed video stream. The handheld communication device has at least two cameras facing in two opposite directions. The handheld communication device receives a first video stream and a second video stream simultaneously from the two cameras. The handheld communication device detects a speech activity of a person captured in the video streams. The speech activity may be detected from direction of sound or lip movement of the person. Based on the detection, the handheld communication device automatically switches between the first video stream and the second video stream to generate a multiplexed video stream. The multiplexed video stream interleaves segments of the first video stream and segments of the second video stream. Other embodiments are also described and claimed.
Abstract:
A portable electronic device having an outer case having a substantially planar face in which a microphone associated acoustic port is formed. The device also has a micro-electro-mechanical system (MEMS) microphone positioned within the outer case, the MEMS microphone having a diaphragm facing the microphone associated acoustic port. An acoustic mesh is positioned between the front face of the outer case and the diaphragm, the acoustic mesh having a non-linear acoustic resistance so as to minimize an effect of an incoming air burst on the diaphragm. Other embodiments are also described and claimed.
Abstract:
A handheld communication device is used to capture video streams and generate a multiplexed video stream. The handheld communication device has at least two cameras facing in two opposite directions. The handheld communication device receives a first video stream and a second video stream simultaneously from the two cameras. The handheld communication device detects a speech activity of a person captured in the video streams. The speech activity may be detected from direction of sound or lip movement of the person. Based on the detection, the handheld communication device automatically switches between the first video stream and the second video stream to generate a multiplexed video stream. The multiplexed video stream interleaves segments of the first video stream and segments of the second video stream. Other embodiments are also described and claimed.
Abstract:
A connector for receiving a cylindrical plug includes a body defining a plug aperture and a cavity for receiving the cylindrical plug. A plurality of electrical contacts in communication with the cavity make electrical connections with the cylindrical plug and retain the cylindrical plug. A microphone is coupled to the body such that the plug aperture and the cavity provide an acoustic path to the microphone. The microphone may be at an end of the connector opposite the plug aperture or on a side of the connector adjacent the plug aperture. The connector allows a microphone to be added to a device, such as a mobile telephone, without the need for an additional external aperture. The microphone in the connector may operate with a second microphone and processing electronics in the device to provide audio processing functions such as noise cancellation or audio beamforming.
Abstract:
A handheld communication device is used to capture video streams and generate a multiplexed video stream. The handheld communication device has at least two cameras facing in two opposite directions. The handheld communication device receives a first video stream and a second video stream simultaneously from the two cameras. The handheld communication device detects a speech activity of a person captured in the video streams. The speech activity may be detected from direction of sound or lip movement of the person. Based on the detection, the handheld communication device automatically switches between the first video stream and the second video stream to generate a multiplexed video stream. The multiplexed video stream interleaves segments of the first video stream and segments of the second video stream. Other embodiments are also described and claimed.
Abstract:
A connector for receiving a cylindrical plug includes a body defining a plug aperture and a cavity for receiving the cylindrical plug. A plurality of electrical contacts in communication with the cavity make electrical connections with the cylindrical plug and retain the cylindrical plug. A microphone is coupled to the body such that the plug aperture and the cavity provide an acoustic path to the microphone. The microphone may be at an end of the connector opposite the plug aperture or on a side of the connector adjacent the plug aperture. The connector allows a microphone to be added to a device, such as a mobile telephone, without the need for an additional external aperture. The microphone in the connector may operate with a second microphone and processing electronics in the device to provide audio processing functions such as noise cancellation or audio beamforming.
Abstract:
A portable electronic device having an outer case having a substantially planar face in which a microphone associated acoustic port is formed. The device also has a micro-electro-mechanical system (MEMS) microphone positioned within the outer case, the MEMS microphone having a diaphragm facing the microphone associated acoustic port. An acoustic mesh is positioned between the front face of the outer case and the diaphragm, the acoustic mesh having a non-linear acoustic resistance so as to minimize an effect of an incoming air burst on the diaphragm. Other embodiments are also described and claimed.