摘要:
A micromechanical tool includes at least one functional module. The functional module has a housing which is constructed as a layer package consisting of structured, flat material elements forming several layers of the layer package. In one embodiment the functional embodiment positions a first end of a light conductor with respect to an object. It is also conceivable for the function module to be a machining module by irradiating for the purpose of altering the material by laser radiation.
摘要:
The problem with a micro-functional unit produced by hybrid-integration microstructure technology, comprising microcomponents which can be used in microstructure technology and codetermine the functioning of the micro-functional unit and at least one support comprising a piece of flat material for receiving the microcomponents, is that of positioning at least some of the microcomponents exactly relative to the support, which can be accomplished in that a freely extending finger is formed from the piece of flat material of the respective support by means of two openings located opposite one another and passing through the entire support and that the finger serves as a holding element for one of the microcomponents.
摘要:
In order to provide a method of carrying out working steps in at least one work station on miniaturised modules which are held by a module carrier provided with a holding device, whereby the method enables a plurality of processing steps to be carried out on a module, it is proposed that the module be moved by one of the module carriers to a plurality of work stations for carrying out the working steps and that it be precisely positioned for carrying out one of the working steps by means of a relative movement between the module carrier and the currently relevant one of the plurality of workstations, and in that the positioning of the module relative to the module carrier be maintained for carrying out the working steps.
摘要:
In order to provide a method of carrying out working steps in at least one work station on miniaturized modules which are held by a module carrier provided with a holding device, whereby the method enables a plurality of processing steps to be carried out on a module, it is proposed that the module be moved by one of the module carriers to a plurality of work stations for carrying out the working steps and that it be precisely positioned for carrying out one of the working steps by means of a relative movement between the module carrier and the currently relevant one of the plurality of workstations, and in that the positioning of the module relative to the module carrier be maintained for carrying out the working steps.
摘要:
The aim of the invention is to improve a projector lens, comprising an optical element for shaping radiation fields emitted from light guides, such that the light guide may be optimally coupled to the optical element. Said aim is achieved, whereby the optical element is embodied in a monolithic body, comprising a radiation field forming region and a connector region for the light guide, which form part of the optical element and the connector region comprises a connector surface for a front face of the light guide which approximately matches a diameter of the light guide and is arranged offset from a vicinity of the connector region.
摘要:
In order to provide a method of carrying out working steps in at least one work station on miniaturised modules which are held by a module carrier provided with a holding device, whereby the method enables a plurality of processing steps to be carried out on a module, it is proposed that the module be moved by one of the module carriers to a plurality of work stations for carrying out the working steps and that it be precisely positioned for carrying out one of the working steps by means of a relative movement between the module carrier and the currently relevant one of the plurality of workstations, and in that the positioning of the module relative to the module carrier be maintained for carrying out the working steps.
摘要:
For the purpose of producing a method for detaching a segment—disposed on a carrier—from a material layer extending in a layer plane and having a specific layer thickness, by means of a laser pulse passing through the carrier in such a way as to detach segments from a material layer with as little thermal stress and as few thermal secondary effects as possible, it is proposed that the laser pulse within a segment layer-component volume butting against the carrier, the said layer-component volume lying in the plane of the layer within an extent of the beam cross-section of the laser pulse and extending transversely to the layer plane via a part of the layer thickness, produces superheated matter of a density similar to the solid state in a state of thermodynamic non-equilibrium and in particular at a temperature above the critical temperature, and that a cohesive, solid partial layer remains in the segment on the side of the layer-component volume opposite to the carrier, the said partial layer being urged away from the carrier by the superheated matter.