摘要:
A lithium secondary battery has a positive electrode, a negative electrode, and a non-aqueous electrolyte. The negative electrode has a negative electrode current collector and a negative electrode mixture layer containing a negative electrode conductive agent, a negative electrode binder, and negative electrode active material particles made of a material containing silicon. The negative electrode mixture layer is sintered and disposed on the negative electrode current collector. The negative electrode active material particles have an average particle size of from 5.0-15.0 μm before being charged. The negative electrode conductive agent is made of a graphite material having an average particle size of from 2.5-15.0 μm. The amount of the graphite material added is from 3-20 mass % with respect to the negative electrode active material. The theoretical electrical capacity ratio of the positive electrode to the negative electrode is 1.0 or less.
摘要:
[Problem] An object of the invention is to provide a lithium secondary battery that shows good cycle performance and at the same time prevents a battery thickness increase due to charge-discharge cycles, and a method of manufacturing such a battery.[Means for Solving the Problem] A lithium secondary battery includes a negative electrode (2) having a negative electrode current collector (11) and a negative electrode active material layer (12) disposed on the negative electrode current collector (11), a positive electrode (1) having a positive electrode active material, a separator (3), and a non-aqueous electrolyte. The negative electrode active material layer includes negative electrode active material particles and a negative electrode binder, and the negative electrode active material particles include silicon particles and/or silicon alloy particles. The silicon particles and the silicon alloy particles have a crystallite size of 100 nm or less.
摘要:
[Problem] An object of the invention is to provide a lithium secondary battery that shows good cycle performance and at the same time prevents a battery thickness increase due to charge-discharge cycles, and a method of manufacturing such a battery.[Means for Solving the Problem] A lithium secondary battery includes a negative electrode (2) having a negative electrode current collector (11) and a negative electrode active material layer (12) disposed on the negative electrode current collector (11), a positive electrode (1) having a positive electrode active material, a separator (3), and a non-aqueous electrolyte. The negative electrode active material layer includes negative electrode active material particles and a negative electrode binder, and the negative electrode active material particles include silicon particles and/or silicon alloy particles. The silicon particles and the silicon alloy particles have a crystallite size of 100 nm or less.
摘要:
A lithium secondary battery includes an electrode assembly having a positive electrode (1), a negative electrode (2) having a negative electrode current collector and a negative electrode active material layer formed on a surface of the negative electrode current collector and composed of a binder and negative electrode active material particles containing silicon and/or a silicon alloy, and a separator (3) interposed between the electrodes. The electrode assembly is impregnated with a non-aqueous electrolyte. The binder contains a polyimide resin represented by the following chemical formula (1): where R contains at least a benzene ring, and n is within the range of from 10 to 100,000, and the negative electrode active material particles have an average particle size of 5 μm or greater.
摘要:
In a lithium secondary battery using a negative electrode having a negative electrode mixture layer formed on a surface of a negative electrode current collector, the mixture layer made of a binder and negative electrode active material particles of silicon and/or a silicon alloy, charge-discharge cycle performance is improved without degrading the capacity per unit volume, by making the negative electrode mixture layer sufficiently adhere to the negative electrode current collector. The negative electrode has a negative electrode mixture layer composed of a binder and negative electrode active material particles of silicon and/or a silicon alloy. The negative electrode mixture layer is formed on a surface of the negative electrode current collector by sintering. Negative electrode active material particles are partially embedded in the negative electrode current collector.
摘要:
A lithium secondary battery is provided in which the current collector tab attachment structure has been improved to inhibit a drop in the charge-discharge cycle performance while inhibiting bulging in the battery, thereby allowing the volume energy density to be increased. The positive electrode current collector at the outermost periphery portion of a flat electrode assembly is provided with a positive electrode current collector tab that is parallel to the winding direction of the flat electrode assembly, and the negative electrode current collector at the outermost periphery portion of the flat electrode assembly is provided with a negative electrode current collector tab that is parallel to the winding direction of the flat electrode assembly.
摘要:
In a lithium secondary battery using a negative electrode having a negative electrode mixture layer formed on a surface of a negative electrode current collector, the mixture layer made of a binder and negative electrode active material particles of silicon and/or a silicon alloy, charge-discharge cycle performance is improved without degrading the capacity per unit volume, by making the negative electrode mixture layer sufficiently adhere to the negative electrode current collector. The negative electrode has a negative electrode mixture layer composed of a binder and negative electrode active material particles of silicon and/or a silicon alloy. The negative electrode mixture layer is formed on a surface of the negative electrode current collector by sintering. Negative electrode active material particles are partially embedded in the negative electrode current collector.
摘要:
A lithium secondary battery of the present invention comprises a positive electrode formed by disposing a positive-electrode mixture layer containing a positive-electrode active material and a positive-electrode binder, on a surface of a positive-electrode current collector; a negative electrode formed by sintering a negative-electrode mixture layer containing a negative-electrode binder and a negative-electrode active material containing silicon and/or a silicon alloy, disposed on a surface of a negative-electrode current collector; a separator disposed between the positive electrode and the negative electrode; and a nonaqueous electrolyte; wherein an electrode unit obtained by setting the positive electrode and the negative electrode opposed to each other through the separator and rolling them in spirally rolled state is placed in a cylindrical battery container and wherein a curvature radius of the negative-electrode mixture layer opposed to the positive-electrode mixture layer through the separator in the spirally rolled state is 1.5 mm or larger.
摘要:
A rechargeable lithium battery including a negative electrode made by sintering, on a surface of a conductive metal foil as a current collector, a layer of a mixture of active material particles containing silicon and/or a silicon alloy and a binder, a positive electrode and a nonaqueous electrolyte, characterized in that the nonaqueous electrolyte contains carbon dioxide dissolved therein.
摘要:
A lithium secondary battery of the present invention comprises a positive electrode formed by disposing a positive-electrode mixture layer containing a positive-electrode active material and a positive-electrode binder, on a surface of a positive-electrode current collector; a negative electrode formed by sintering a negative-electrode mixture layer containing a negative-electrode binder and a negative-electrode active material containing silicon and/or a silicon alloy, disposed on a surface of a negative-electrode current collector; a separator disposed between the positive electrode and the negative electrode; and a nonaqueous electrolyte; wherein an electrode unit obtained by setting the positive electrode and the negative electrode opposed to each other through the separator and rolling them in spirally rolled state is placed in a cylindrical battery container and wherein a curvature radius of the negative-electrode mixture layer opposed to the positive-electrode mixture layer through the separator in the spirally rolled state is 1.5 mm or larger.