摘要:
It is possible to provide a radio communication system, a radio base station device, and a radio terminal device capable of reducing the power consumption in a radio terminal device without thinning pilot signals used for measuring upstream line quality. In the radio base station device (100) used in a radio communication system using different frequency bands for the upstream line and the downstream line, an upstream line pilot generation unit (115) forms a CQI measuring pilot signal and an upstream line RF unit (105) transmits the communication quality measuring pilot signal by using the upstream line use frequency band in the upstream line pilot transmission section. Thus, the upstream communication quality measuring pilot signal used by the radio base station device (100) to measure the line quality is transmitted by using the upstream line frequency band and accordingly, it is possible to reduce the power consumption in the radio terminal device.
摘要:
It is possible to provide a radio communication system, a radio base station device, and a radio terminal device capable of reducing the power consumption in a radio terminal device without thinning pilot signals used for measuring upstream line quality. In the radio base station device (100) used in a radio communication system using different frequency bands for the upstream line and the downstream line, an upstream line pilot generation unit (115) forms a CQI measuring pilot signal and an upstream line RF unit (105) transmits the communication quality measuring pilot signal by using the upstream line use frequency band in the upstream line pilot transmission section. Thus, the upstream communication quality measuring pilot signal used by the radio base station device (100) to measure the line quality is transmitted by using the upstream line frequency band and accordingly, it is possible to reduce the power consumption in the radio terminal device.
摘要:
Disclosed are an encoding device and a decoding device which can effectively reduce the decoding failure frequency in LDPC encoding/decoding. A loss correction encoding device (120) includes a padding unit (121) which adds a padding packet to an information packet sequence; an interleave unit (122) which rearranges the padding packet and the information packet; and a loss correction encoding unit (123) which performs loss correction encoding for the packet string after the interleave. The interleave unit (122) rearranges the padding packet and the information packet according to variable nodes constituting a minimum stopping set of the inspection matrix which defines a low-density parity inspection code. The interleave unit (122) uses such a rearrangement pattern that avoids a loss correction failure by the minimum stopping set of the LDPC inspection matrix so as to reduce the probability of the loss correction failure by the minimum stopping set.
摘要:
Disclosed are an encoding device and a decoding device which can effectively reduce the decoding failure frequency in LDPC encoding/decoding. A loss correction encoding device (120) includes a padding unit (121) which adds a padding packet to an information packet sequence; an interleave unit (122) which rearranges the padding packet and the information packet; and a loss correction encoding unit (123) which performs loss correction encoding for the packet string after the interleave. The interleave unit (122) rearranges the padding packet and the information packet according to variable nodes constituting a minimum stopping set of the inspection matrix which defines a low-density parity inspection code. The interleave unit (122) uses such a rearrangement pattern that avoids a loss correction failure by the minimum stopping set of the LDPC inspection matrix so as to reduce the probability of the loss correction failure by the minimum stopping set.
摘要:
It is possible to provide and an LDPC-CC (Low-Density Parity-Check Convolution Codes) encoder and an LDPC-CC decoder which performs an error correction encoding and decoding while reducing the amount of a termination sequence required for encoding/decoding the LDPC-CC encoding/decoding and suppressing degradation of the transmission efficiency. The LDPC-CC encoder (400) includes a weight control unit (470) which stores a weight pattern (475) based on an LDPC-CC inspection matrix (100); and a weight pattern (476) based on a check matrix (300) obtained by deforming an LDPC-CC inspection matrix (100). The weight control unit (470) controls a weight to be multiplied onto the outputs of a plurality of shift registers (410-1 to 410-M, 430-1 to 430-M) by using the weight pattern (475) when the input bit is an information sequence, and using a weight pattern (476) which makes a weight value to be multiplied by an inspection bit v2,t to be 0 when the input bit is a termination sequence.
摘要:
A transmitter apparatus wherein a simple structure is used to successfully suppress the degradation of error rate performance that otherwise would be caused by fading or the like. There are included encoding parts (11—1-11—4) that encode transport data; a mapping part (3304) that performs such a mapping that encoded data sequentially formed by the encoding parts (11—1-11—4) are not successively included in the same symbol, thereby forming data symbols; and a symbol interleaver (3301) that interleaves the data symbols. In this way, a low computational complexity can be used to perform an interleaving process equivalent to a bit interleaving process to effectively improve the reception quality at a receiving end.
摘要:
Provided is a transmission device which improves the error rate characteristic upon decoding when performing error correction encoding by using a self-orthogonal code or an LDPC-CC in a communication system using a communication path having a fading fluctuation, multi-value modulation, or MIMO transmission. In the transmission device, the self-orthogonal encoding unit (110) encodes a self-orthogonal code having a constriction length K and an interleave unit (130) rearranges a code word sequence so that the same modulation symbol includes an information bit of a moment i and a non-correlated bit of the information bit of the moment i in a multi-value modulation unit (150).
摘要:
It is possible to demodulate a plurality of modulated signals transmitted from a plurality of antennas by using a comparatively small-size circuit with a preferable error ratio characteristic. Partial bit judgment units (509, 512) demodulates partial bits of the 64QAM-modulated signal by modifying which of the bits in the 6-bit strings constituting a symbol is to be demodulated depending on in which region of the IQ plane the reception signal point exists. This improves the partial bit error characteristic judged by the partial bit judgment units (509, 512), which in turn improves reliability of the reduced candidate signal point for use by a likelihood detection unit (518). As a result, it is possible to improve the error ratio characteristic of the final reception digital signals (322, 323).
摘要:
There is provided an encoder that provides a termination sequence with a simple structure for LDPC-CC encoding and reduces an amount of the termination sequence transmitted to a transmission line. The LDPC-CC encoder (200) connects a first encoder (230) to a second encoder (240) to perform encoding and thereby carry out LDPC-CC encoding, the first encoder (230) performing encoding based on an partial parity check matrix for information bits (110) obtained by extracting a sequence corresponding to the information bits in a parity check matrix (100) and the second encoder (240) performing encoding based on a partial parity check matrix for parity bits (120) obtained by extracting a sequence corresponding to the parity bits in the parity check matrix (100). A termination sequence generator (210) generates a termination sequence including the same number of bits as the memory length of the first encoder (230) and provides the generated termination sequence as an input sequence.
摘要:
A transmitting device and method enabling improvement of the reception quality on the receiving side when the LDPC-CC (Low-Density Parity-Check Convolutional Codes) encoding is used. The transmitting device (100) comprises an LDPC-CC encoding section (102), a sorting section (121) for sorting the encoded data (120) acquired by the LDPC-CC encoding section (102) into a first encoded data set (103_A) corresponding to the column number of the column containing “1” in a part of an LDPC-CC check matrix H from which a protograph is excluded and a second encoded data set (103_B) corresponding to the column numbers of the columns other than that, and a frame constructing section (a control section (106)) for constructing a transmission frame where the first and second encoded data sets (103_A, 103_B) are arranged in positions different in time or frequency in the transmission frame.