摘要:
An invention is disclosed whereby a wireless network node, equipped with two or more radio transceivers statically tuned to non-interfering frequency channels, can make decisions regarding which channel to use when communicating with a neighboring wireless node. A multi-radio unification protocol implemented in a wireless node coordinates the use of multiple wireless network interface cards and provides a virtual layer that hides the multiple physical network interfaces from higher layers of a node's network protocol stack. The invention is applicable to wireless networks generally, including those in which some nodes do not have multiple radios or do not recognize the multi-radio unification protocol. The invention makes possible simultaneous transmissions using available channels, thereby reducing interference and delay while increasing the overall capacity of the network.
摘要:
An invention is disclosed whereby a wireless network node, equipped with two or more radio transceivers statically tuned to non-interfering frequency channels, can make decisions regarding which channel to use when communicating with a neighboring wireless node. A multi-radio unification protocol implemented in a wireless node coordinates the use of multiple wireless network interface cards and provides a virtual layer that hides the multiple physical network interfaces from higher layers of a node's network protocol stack. The invention is applicable to wireless networks generally, including those in which some nodes do not have multiple radios or do not recognize the multi-radio unification protocol. The invention makes possible simultaneous transmissions using available channels, thereby reducing interference and delay while increasing the overall capacity of the network.
摘要:
Described herein is an implementation that reduces the battery consumption of an energy-constrained computing device that is capable of communicating over a wireless network. As conditions and circumstances warrant, the implementation selects one of multiple radios (e.g., two)—with each having a unique combination of characteristics (in terms of power-consumption, data-rate, range and/or frequency band of operation) for wireless communications to and from a wireless device. The implementation selects one radio to minimize power-consumption while maintaining effective wireless data communication. This abstract itself is not intended to limit the scope of this patent. The scope of the present invention is pointed out in the appending claims.
摘要:
Disclosed is a Neighbor Location Discovery Protocol (NLDP) that determines the relative locations of the nodes in a mesh network. In one embodiment, NLDP can be implemented for an ad-hoc wireless network where the nodes are equipped with directional antennas and are not able to use GPS. While NLDP relies on nodes having at least two RF transceivers, it offers significant advantages over previously proposed protocols that employ only one RF transceiver. In NLDP antenna hardware is simple, easy to implement, and readily available. Further, NLDP exploits the host node's ability to operate simultaneously over non-overlapping channels to quickly converge on the neighbor's location. NLDP is limited by the range of the control channel, which operates in a omni-directional fashion. However, by choosing a low frequency band, high power, and low data rate, the range of the control channel can be increased to match the range on the data channel.
摘要:
A method and system for optimizing channel access scheduling for multiple wireless computing devices over a wireless network improves channel access efficiency with respect to a primary channel. An access point, or host computer, includes a host transceiver for receiving control information from the wireless computing devices over a low power channel. Upon receiving the control information, the access point applies a scheduling algorithm to schedule channel access for the wireless computing devices to transmit data over the primary communication channel. The wireless computing devices include a low power radio for receiving scheduling information via the low power channel during idle periods. When the scheduling information is received, the wireless computing device activates its primary channel network interface components to communicate data through the primary channel. When the computing device is idle, the device is configured to power down all of its components with the exception of the circuitry required to power the low power channel. As such, the low power channel is maintained in an active state for receiving scheduling information, such as an access schedule, during both idle and non-idle periods.
摘要:
A method and system for optimizing channel access scheduling for multiple wireless computing devices over a wireless network improves channel access efficiency with respect to a primary channel. An access point, or host computer, includes a host transceiver for receiving control information from the wireless computing devices over a low power channel. Upon receiving the control information, the access point applies a scheduling algorithm to schedule channel access for the wireless computing devices to transmit data over the primary communication channel. The wireless computing devices include a low power radio for receiving scheduling information via the low power channel during idle periods. When the scheduling information is received, the wireless computing device activates its primary channel network interface components to communicate data through the primary channel. When the computing device is idle, the device is configured to power down all of its components with the exception of the circuitry required to power the low power channel. As such, the low power channel is maintained in an active state for receiving scheduling information, such as an access schedule, during both idle and non-idle periods.
摘要:
A method and system for optimizing channel access scheduling for multiple wireless computing devices over a wireless network improves channel access efficiency with respect to a primary channel. An access point, or host computer, includes a host transceiver for receiving control information from the wireless computing devices over a low power channel. Upon receiving the control information, the access point applies a scheduling algorithm to schedule channel access for the wireless computing devices to transmit data over the primary communication channel. The wireless computing devices include a low power radio for receiving scheduling information via the low power channel during idle periods. When the scheduling information is received, the wireless computing device activates its primary channel network interface components to communicate data through the primary channel. When the computing device is idle, the device is configured to power down all of its components with the exception of the circuitry required to power the low power channel. As such, the low power channel is maintained in an active state for receiving scheduling information, such as an access schedule, during both idle and non-idle periods.
摘要:
Described herein is an implementation that reduces the battery consumption of an energy-constrained computing device that is capable of communicating over a wireless network. As conditions and circumstances warrant, the implementation selects one of multiple radios (e.g., two)—with each having a unique combination of characteristics (in terms of power-consumption, data-rate, range and/or frequency band of operation) for wireless communications to and from a wireless device. The implementation selects one radio to minimize power-consumption while maintaining effective wireless data communication. This abstract itself is not intended to limit the scope of this patent. The scope of the present invention is pointed out in the appending claims.
摘要:
An invention is disclosed whereby a wireless network node, equipped with two or more radio transceivers statically tuned to non-interfering frequency channels, can make decisions regarding which channel to use when communicating with a neighboring wireless node. A multi-radio unification protocol implemented in a wireless node coordinates the use of multiple wireless network interface cards and provides a virtual layer that hides the multiple physical network interfaces from higher layers of a node's network protocol stack. The invention is applicable to wireless networks generally, including those in which some nodes do not have multiple radios or do not recognize the multi-radio unification protocol. The invention makes possible simultaneous transmissions using available channels, thereby reducing interference and delay while increasing the overall capacity of the network.
摘要:
Disclosed is a Neighbor Location Discovery Protocol (NLDP) that determines the relative locations of the nodes in a mesh network. In one embodiment, NLDP can be implemented for an ad-hoc wireless network where the nodes are equipped with directional antennas and are not able to use GPS. While NLDP relies on nodes having at least two RF transceivers, it offers significant advantages over previously proposed protocols that employ only one RF transceiver. In NLDP antenna hardware is simple, easy to implement, and readily available. Further, NLDP exploits the host node's ability to operate simultaneously over non-overlapping channels to quickly converge on the neighbor's location. NLDP is limited by the range of the control channel, which operates in a omni-directional fashion. However, by choosing a low frequency band, high power, and low data rate, the range of the control channel can be increased to match the range on the data channel.