Abstract:
The present disclosure provides an electronic device. The electronic device includes a first substrate, a second substrate opposite to the first substrate, a buffer layer disposed on the second substrate, a protection layer, an active array, a pixel array, and an alignment film. The first substrate includes a transmitting region, a display region surrounding the transmission region, and a periphery region surrounding the display region. The protection layer is disposed on the buffer layer. The active array is disposed on the buffer layer. The pixel array is disposed on the active array and electrically connected to the active array. The alignment film is conformally disposed on the protection layer and the second substrate. The alignment film includes a first portion in direct contact with the second substrate. A vertical projection of the first portion of the alignment film overlaps the transmitting region of the first substrate.
Abstract:
A display device includes a pixel array substrate, a sensing element substrate, and a display medium layer. The display medium layer is disposed between the pixel array substrate and the sensing element substrate. The sensing element substrate includes a substrate, a switch element, an insulation layer, an electrically conductive layer, a signal line, a sensing layer, and an electrode layer. The switch element is disposed on the substrate. The insulation layer covers the switch element. The electrically conductive layer is disposed on the insulation layer. The signal line is electrically connected to the electrically conductive layer. The sensing layer covers a top surface of the electrically conductive layer, a first side of the electrically conductive layer, and a second side of the electrically conductive layer. The electrode layer covers the sensing layer. The electrode layer is electrically connected to the switching element.
Abstract:
An active device array substrate including a first scan line, a first data line, a second data line, a first active device, a first pixel electrode, a second active device, a second pixel electrode, and a first shielding pattern layer is provided. The first active device includes a first gate electrically connected to the first scan line, a first semiconductor pattern layer, a first source electrically connected to the first data line, and a first drain. The second active device includes a second gate electrically connected to the first scan line, a second semiconductor pattern layer, a second source electrically connected to the second data line, and a second drain. The first shielding pattern layer is overlapped with the first semiconductor pattern layer and the second semiconductor pattern layer. The first shielding pattern layer is overlapped with the second data line and not overlapped with the first data line.
Abstract:
An active device array substrate including a first scan line, a first data line, a second data line, a first active device, a first pixel electrode, a second active device, a second pixel electrode, and a first shielding pattern layer is provided. The first active device includes a first gate electrically connected to the first scan line, a first semiconductor pattern layer, a first source electrically connected to the first data line, and a first drain. The second active device includes a second gate electrically connected to the first scan line, a second semiconductor pattern layer, a second source electrically connected to the second data line, and a second drain. The first shielding pattern layer is overlapped with the first semiconductor pattern layer and the second semiconductor pattern layer. The first shielding pattern layer is overlapped with the second data line and not overlapped with the first data line.
Abstract:
A fabricating method of CMOS transistor includes following steps. A first gate and a second gate are formed on a substrate. A gate insulator is formed on the substrate to cover the first and second gates. A first source, a first drain, a second source, and a second drain are formed on the gate insulator. The first source and the first drain are above the first gate. The second source and the second drain are above the second gate. A first channel layer and a mask layer are formed on the gate insulator. The mask layer is on the first channel layer. The first channel layer is above the first gate and contacts with the first source and the first drain. A second channel layer is formed on the gate insulator. The second channel layer is above the second gate and contacts with the second source and the second drain.
Abstract:
An electronic device, including an active device substrate, an insulation film, a vertical wire, and an anisotropic conductive adhesive, is provided. The active device substrate includes a substrate, a first wire, and a second wire. The first wire is configured on a first surface of the substrate, the second wire is configured on a second surface of the substrate, and a side surface connects the first surface to the second surface that is opposite to the first surface. The insulation film is configured on the side surface of the substrate. The vertical wire is configured on a surface of the insulation film and is located between the insulation film and the side surface of the substrate. The anisotropic conductive adhesive is configured between the vertical wire and the side surface of the substrate and electrically connects the vertical wire to the first wire and the second wire.
Abstract:
A fabricating method of CMOS transistor includes following steps. A first gate and a second gate are formed on a substrate. A gate insulator is formed on the substrate to cover the first and second gates. A first source, a first drain, a second source, and a second drain are formed on the gate insulator. The first source and the first drain are above the first gate. The second source and the second drain are above the second gate. A first channel layer and a mask layer are formed on the gate insulator. The mask layer is on the first channel layer. The first channel layer is above the first gate and contacts with the first source and the first drain. A second channel layer is formed on the gate insulator. The second channel layer is above the second gate and contacts with the second source and the second drain.
Abstract:
A fabricating method of CMOS transistor includes following steps. A first gate and a second gate are formed on a substrate. A gate insulator is formed on the substrate to cover the first and second gates. A first source, a first drain, a second source, and a second drain are formed on the gate insulator. The first source and the first drain are above the first gate. The second source and the second drain are above the second gate. A first channel layer and a mask layer are formed on the gate insulator. The mask layer is on the first channel layer. The first channel layer is above the first gate and contacts with the first source and the first drain. A second channel layer is formed on the gate insulator. The second channel layer is above the second gate and contacts with the second source and the second drain.
Abstract:
A display device includes a pixel array substrate, a sensing element substrate, and a display medium layer. The display medium layer is disposed between the pixel array substrate and the sensing element substrate. The sensing element substrate includes a substrate, a switch element, an insulation layer, an electrically conductive layer, a signal line, a sensing layer, and an electrode layer. The switch element is disposed on the substrate. The insulation layer covers the switch element. The electrically conductive layer is disposed on the insulation layer. The signal line is electrically connected to the electrically conductive layer. The sensing layer covers a top surface of the electrically conductive layer, a first side of the electrically conductive layer, and a second side of the electrically conductive layer. The electrode layer covers the sensing layer. The electrode layer is electrically connected to the switching element.
Abstract:
A pixel structure includes a first insulating layer, a second metal layer, a second insulating layer, and a third metal layer. The second metal layer is disposed on the first insulating layer, and the second metal layer includes at least one first data line, at least one source, and at least one first drain, wherein the first data line is electrically connected to the source. The second insulating layer is disposed on the second metal layer, the second insulating layer includes at least one opening that is disposed corresponding to the first drain, and the area of the opening is greater than the area of the first drain. The third metal layer includes at least one second drain that is electrically connected to the first drain, the second drain is disposed corresponding to the opening and disposed on the first drain.