Abstract:
Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.
Abstract:
A terminal of an exemplary transmitting device is configured to receive an initial clock signal. A first phase lock loop is configured to lock a phase of an initial periodic signal with a phase of the initial clock signal. A transmitting data block interface is configured to provide the plurality of data blocks with samples of the initial periodic signal to a receiving device. An exemplary receiving device includes a receiving data block interface configured to receive the plurality of data blocks. A second phase lock loop is configured to recreate the initial periodic signal and lock a phase of the recreated periodic signal with a phase of the samples of the initial periodic signal. The clock signal generator is configured to recreate and provide the initial clock signal. The recreated clock signal is synchronized to the initial clock signal based on the phase of the recreated periodic signal.
Abstract:
Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.
Abstract:
A terminal of an exemplary transmitting device is configured to receive an initial clock signal. A first phase lock loop is configured to lock a phase of an initial periodic signal with a phase of the initial clock signal. A transmitting data block interface is configured to provide the plurality of data blocks with samples of the initial periodic signal to a receiving device. An exemplary receiving device includes a receiving data block interface configured to receive the plurality of data blocks. A second phase lock loop is configured to recreate the initial periodic signal and lock a phase of the recreated periodic signal with a phase of the samples of the initial periodic signal. The clock signal generator is configured to recreate and provide the initial clock signal. The recreated clock signal is synchronized to the initial clock signal based on the phase of the recreated periodic signal.
Abstract:
Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.
Abstract:
Systems and methods for transceiver communication are discussed herein. An exemplary system comprises a first transceiver unit comprising a first attenuator, a filter module, a gain module, and an antenna. The first attenuator may be configured to attenuate a transmission signal from a second transceiver module over a coaxial cable. The transmission signal may comprise a primary component and a triple transit component. The first attenuator may further be configured to attenuate and provide a reflection signal over the coaxial cable to the second transceiver module. The reflection signal may be based on a reflection of at least a portion of the transmission signal. The filter module configured to filter the transmission signal. The gain module may be configured to increase the gain of the transmission signal. The antenna may be configured to transmit the transmission signal.
Abstract:
Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I″) signal and a quadrature (“Q″) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.
Abstract:
Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.
Abstract:
Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (“I”) signal and a quadrature (“Q”) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.
Abstract:
Systems and methods for transceiver communication are discussed herein. An exemplary system comprises a first transceiver and a second transceiver. The first transceiver may comprise an I/Q module and a PHY device. The I/Q module may receive a first complex signal and transform the first complex signal into bit words of a predetermined size and framewords. The PHY device may receive the bit words, transmit the bit words and framewords over a cable, and perform adaptive cancellation. The second transceiver may comprise a PHY device, an I/Q module, an I/Q modulator, and an antenna. The PHY device may receive the bit words and the framewords from over the cable. The I/Q module may transform the bit words to a second complex signal based on the framewords. The I/Q modulator may modulate the complex signal to generate a transmit signal. The antenna may transmit the signal.
Abstract translation:本文讨论了收发器通信的系统和方法。 示例性系统包括第一收发器和第二收发器。 第一收发机可以包括I / Q模块和PHY设备。 I / Q模块可以接收第一复合信号,并将第一复数信号变换成预定大小的位字和成帧信号。 PHY设备可以接收位字,通过电缆发送位字和帧输入,并执行自适应消除。 第二收发器可以包括PHY设备,I / Q模块,I / Q调制器和天线。 PHY设备可以通过电缆接收位字和帧信号。 I / Q模块可以将位字转换成基于信号线的第二复信号。 I / Q调制器可以调制复信号以产生发射信号。 天线可以发送信号。