VEHICLE CONTROL
    1.
    发明申请

    公开(公告)号:US20220315208A1

    公开(公告)日:2022-10-06

    申请号:US17635574

    申请日:2020-09-03

    Abstract: The present disclosure relates to a control system for a vehicle, comprising: at least one compressor arranged to generate compressed fluid having a massflow rate; at least one fluidic control effector in fluidic communication with the at least one compressor and arranged to change the direction of travel of the vehicle when the compressed fluid is incident on the at least one fluidic control effector; a dump duct for expelling excess compressed fluid not delivered to the at least one fluidic control effector out of the vehicle; a dump valve for controlling the massflow rate of compressed fluid delivered to the dump duct; and a controller electrically coupled to the dump valve and configured to adjust the dump valve. The present disclosure also relates to an aircraft having the control system and a method of controlling a vehicle.

    AN AIR VEHICLE AND IMAGING APPARATUS THEREFOR

    公开(公告)号:US20180305009A1

    公开(公告)日:2018-10-25

    申请号:US15768729

    申请日:2016-10-28

    Abstract: An air vehicle (10) comprising a main body (12) and a pair of opposing wing members (14a, 14b) extending substantially laterally from the main body (12) having a principal axis orthogonal to the longitudinal axis (20) of said wing members, at least a first propulsion device (16a) associated with a first of said wing members arranged and configured to generate a linear thrust relative to the main body in a first direction, and a second propulsion device (16b) associated with a second of said wing members arranged and configured to generate linear thrust relative to said main body in a second, substantially opposite, direction such that said wing members and said main body are caused to rotate about said principal axis, in use, the air vehicle further comprising an imaging system (100) configured to cover a substantially 360° imaging area about said principal axis and comprising at least one electro-optic sensor (102) mounted on a support member (104) and having a field of view (102a) covering a portion of said imaging area, said support member being mounted on said air vehicle, said imaging system (100) further comprising a control module (400) configured to define an object or region of interest in relation to said air vehicle, determine a nominal sensor field of view incorporating said object or region of interest, and obtain sequential image data from a sensor having a field of view matching said nominal field of view as said air vehicle completes a rotary cycle.

    FLUIDIC CONTROL
    5.
    发明申请

    公开(公告)号:US20220324552A1

    公开(公告)日:2022-10-13

    申请号:US17635628

    申请日:2020-09-03

    Abstract: A vehicle control system (110) for use with at least one fluidic control effector (102) for a vehicle, the vehicle control system (110) comprising a controller (110), wherein the controller is configured to: receive a vehicle control input indicating a demanded vehicle manoeuvre, wherein the input is further configured to receive condition data; determine a fluid mass-flow for the at least one fluid control effector based on the received vehicle control input and the condition data, wherein the relationship between the fluid mass-flow and the vehicle control input is substantially non-linear; and output data relating to the determined fluid mass-flow to effect the demanded vehicle manoeuvre, wherein the fluid mass-flow is determined to provide a substantially linear relationship between the vehicle control input and the effected demanded vehicle manoeuvre.

    Air vehicle and imaging apparatus therefor

    公开(公告)号:US10807708B2

    公开(公告)日:2020-10-20

    申请号:US15768729

    申请日:2016-10-28

    Abstract: An air vehicle (10) comprising a main body (12) and a pair of opposing wing members (14a, 14b) extending substantially laterally from the main body (12) having a principal axis orthogonal to the longitudinal axis (20) of said wing members, at least a first propulsion device (16a) associated with a first of said wing members arranged and configured to generate a linear thrust relative to the main body in a first direction, and a second propulsion device (16b) associated with a second of said wing members arranged and configured to generate linear thrust relative to said main body in a second, substantially opposite, direction such that said wing members and said main body are caused to rotate about said principal axis, in use, the air vehicle further comprising an imaging system (100) configured to cover a substantially 360° imaging area about said principal axis and comprising at least one electro-optic sensor (102) mounted on a support member (104) and having a field of view (102a) covering a portion of said imaging area, said support member being mounted on said air vehicle, said imaging system (100) further comprising a control module (400) configured to define an object or region of interest in relation to said air vehicle, determine a nominal sensor field of view incorporating said object or region of interest, and obtain sequential image data from a sensor having a field of view matching said nominal field of view as said air vehicle completes a rotary cycle.

    Controller providing linear fluidic control responses to vehicle manoueuvre inputs

    公开(公告)号:US12145717B2

    公开(公告)日:2024-11-19

    申请号:US17635628

    申请日:2020-09-03

    Abstract: A vehicle control system (110) for use with at least one fluidic control effector (102) for a vehicle, the vehicle control system (110) comprising a controller (110), wherein the controller is configured to: receive a vehicle control input indicating a demanded vehicle manoeuvre, wherein the input is further configured to receive condition data; determine a fluid mass-flow for the at least one fluid control effector based on the received vehicle control input and the condition data, wherein the relationship between the fluid mass-flow and the vehicle control input is substantially non-linear; and output data relating to the determined fluid mass-flow to effect the demanded vehicle manoeuvre, wherein the fluid mass-flow is determined to provide a substantially linear relationship between the vehicle control input and the effected demanded vehicle manoeuvre.

    Air vehicle and method and apparatus for control thereof

    公开(公告)号:US10814972B2

    公开(公告)日:2020-10-27

    申请号:US15767041

    申请日:2016-10-28

    Abstract: An air vehicle comprising a main body and a pair of opposing wing members extending substantially laterally from the main body, at least a first propulsion device associated with a first of said wing members and a second propulsion device associated with a second of said wing members, each said propulsion device being arranged and configured to generate linear thrust relative to said main body, in use, the air vehicle further comprising a control module for generating a control signal configured to change a mode of flying of said air vehicle, in use, between a fixed wing mode and a rotary wing mode, wherein, in said fixed wing mode of flying, the direction of thrust generated by the first propulsion device relative to the main body is the same as the direction of thrust generated by the second propulsion device, and in said second mode of flying, the direction of thrust generated by the first propulsion device relative to the main body is opposite to that generated by the second propulsion device.

    AIR VEHICLE AND METHOD AND APPARATUS FOR CONTROL THEREOF

    公开(公告)号:US20190061935A1

    公开(公告)日:2019-02-28

    申请号:US15767041

    申请日:2016-10-28

    Abstract: An air vehicle comprising a main body and a pair of opposing wing members extending substantially laterally from the main body, at least a first propulsion device associated with a first of said wing members and a second propulsion device associated with a second of said wing members, each said propulsion device being arranged and configured to generate linear thrust relative to said main body, in use, the air vehicle further comprising a control module for generating a control signal configured to change a mode of flying of said air vehicle, in use, between a fixed wing mode and a rotary wing mode, wherein, in said fixed wing mode of flying, the direction of thrust generated by the first propulsion device relative to the main body is the same as the direction of thrust generated by the second propulsion device, and in said second mode of flying, the direction of thrust generated by the first propulsion device relative to the main body is opposite to that generated by the second propulsion device.

Patent Agency Ranking