Abstract:
A polypropylene composition made from or containing: A) from 50 wt % to 90 wt %, based upon the total weight of the polypropylene composition, of a propylene homopolymer; and B) from 10 wt % to 50 wt %, based upon the total weight of the polypropylene composition, of a copolymer of propylene and ethylene having from 30.0 wt % to 70.0 wt %, based upon the total weight of the copolymer, of ethylene derived units; the polypropylene composition having: i) an intrinsic viscosity of the fraction soluble in xylene at 25° C. between 2.2 and 4.0 dl/g; ii) a MFR L from 0.5 to 100 g/10 min; and iii) a xylene soluble fraction ranging from 10 wt % to 50 wt %, based upon the total weight of the polypropylene composition.
Abstract:
The present disclosure relates to a multilayer film characterized by one or more skin layers comprising propylene/ethylene copolymers characterized by the following features: an ethylene derived units content of between 1.0 wt % and 15.0% wt %; and a molecular weight distribution (MWD), expressed in terms of Mw/Mn, of greater than 4.0;a content of xylene soluble fraction (XS) and an ethylene derived units content (C2) that fulfills the following relationship: XS
Abstract:
A polypropylene composition made from or containing: A) from 50 wt % to 90 wt %; of a propylene homopolymer; B) from 10 wt % to 50 wt %; of a copolymer of propylene having from 30.0 wt % to 70.0 wt %, of ethylene derived units, based upon the total weight of the copolymer; the sum of the amount of component A) and B) being 100; the polypropylene composition having: i) an intrinsic viscosity of the fraction soluble in xylene at 25° C. between 2.2 to 4.0 dl/g; ii) a MFR L (Melt Flow Rate according to ISO 1133, condition L, at 230° C. and 2.16 kg load) from 0.5 to 100 g/10 min; iii) a xylene soluble fraction ranging from 20 wt % to 50 wt %, based upon the total weight of the polypropylene composition; wherein the polypropylene composition being obtained by a polymerization process wherein the catalyst system contains bismuth.
Abstract:
A polyolefin composition made from or containing:A) from about 19 wt % to about 50 wt % of a propylene ethylene copolymer having an ethylene derived units content ranging from about 1.5 wt % to about 6.0 wt %B) from about 50 wt % to about 81 wt % of a propylene ethylene 1-butene terpolymer having an ethylene derived units content ranging from about 1.5 wt % to about 6.0 wt % and 1-butene derived units content between about 4.8 wt % and about 12.4 wt %;the sum of the amount of component A) and B) being 100;the polyolefin composition being characterized by the following features: molecular weight distribution (MWD), expressed in terms of Mw/Mn, greater than about 4.0; the creep and recovery curve measured on the polymer fuse at 200° C. shows a maximum value between 600 and 1200 seconds, lower than about 53×10−4 l/Pa.
Abstract:
The present disclosure relates to propylene-ethylene copolymers comprising an ethylene content of 0.1-10% by weight, a molecular weight distribution (MWD), expressed in terms of Mw/Mn, of greater than 3.0 and a xylene soluble (XS) fraction content defined by values that fall below the line given by the equation XS=1.0296·e0.435C2. The propylene-ethylene copolymers advantageously exhibit high transparency and low melting temperatures.
Abstract:
A propylene ethylene copolymer having the following features: an ethylene content of between 1.0 and 4.0% by weight; a molecular weight distribution (MWD), expressed in terms of Mw/Mn, of greater than 4.0; a content of xylene soluble fraction (XS) and ethylene content (C2) that fulfills the following relationship: (C2×1.1)+1.25
Abstract:
A catalyst for the homopolymerization or copolymerization of CH2═CHR olefins, made from or containing the product obtained by contacting: (i) a solid catalyst component made from or containing Ti, Mg, Cl, and an internal electron donor compound, wherein the solid catalyst component contains from about 0.1 to about 50 wt % of Bi, based upon the total weight of the solid catalyst component; (ii) an alkyl aluminum compound and, (iii) an external electron donor compound having the formula: (R1)aSi(OR2)b wherein R1 and R2 are independently selected from the group consisting of alkyl radicals with 1-8 carbon atoms and a is 0 or 1 and a+b=4.
Abstract:
A gas-phase process for the homopolymerization or copolymerization of propylene with other olefins, including carrying out the polymerization in the presence of a catalyst system made from or containing: (a) a solid catalyst component made from or containing Mg, Ti, halogen, an electron donor selected from 1.3-diethers and an olefin polymer in a specific amount; (b) an aluminum alkyl compound and (c) an external electron donor (ED) compound, wherein components (b) and (c) being employed in amounts such that the Al/(ED) molar ratio ranges from about 2 to about 200.
Abstract:
A film made from or containing a polyolefin composition made from or containing: A) from about 19 wt % to about 50 wt %, based upon the total weight of the polyolefin composition, of a propylene ethylene copolymer having an ethylene derived units content ranging from about 1.5 wt % to about 6.0 wt %, based upon the total weight of the propylene ethylene copolymer; and B) from about 50 wt % to about 81 wt %, based upon the total weight of the polyolefin composition, of a propylene ethylene 1-butene terpolymer having an ethylene derived units content ranging from about 1.5 wt % to about 6.0 wt %, based upon the total weight of the propylene ethylene 1-butene terpolymer, and 1-butene derived units content of between about 4.8 wt % and about 12.4 wt %, based upon the total weight of the propylene ethylene 1-butene terpolymer; the sum of the amount of component A) and B) being 100.
Abstract:
A polypropylene composition made from or containing: A) from 60 to 90 wt %, based upon the total weight of the polypropylene composition, of a fraction insoluble in xylene at 25° C., is made from or containing more than 80% wt of propylene units, and B) from 10 to 40 wt %, based upon the total weight of the polypropylene composition, of a fraction soluble in xylene at 25° C. is made from or containing a copolymer of propylene and ethylene having an average content of ethylene derived units from 30.0 wt % to 55.0 wt %, wherein the fraction when subjected to GPC fractionation and continuous IR analysis for determining the ethylene content of the eluted fractions (GPC-IR analysis), shows that the content of ethylene increases along with the Mw for fractions having Mw higher than the average.