Abstract:
A method of depolymerizing plastics using a halloysite catalyst is described herein. The method reduces the energy required for the depolymerization process while achieving improved depolymerization results.
Abstract:
A catalyst system obtainable by contacting: A) a metal complex of formula (I) B) an iron complex of the general formula (II) C) an alumoxane or a compound capable of forming an alkyl cation with complexes of formula (I) and (II); Wherein the variables are described in the description
Abstract:
Polyolefin compositions suitable for injection moulded items e.g. for impact bumpers and car interiors comprising from 30% to 90% by weight of an heterophasic propylene polymer composition (A); and from 10% to 70% by weight of a multimodal ethylene/C6-C12 alpha olefin copolymer (B); having density from 0.850 to 0.920 g/cm3, total comonomer content from 6% to 30% by weight, Mw/Mn from 4 to 20; intrinsic viscosity in decalin at 135° C. from 1.0 to 4.0 dL/g, and comprising an HDPE fraction (HDPE % wt) up to 30% wt; further comprising up to 50% by weight of a filler (C) and optionally, in amount up to 10% by weight with respect to the overall composition, an impact modifier masterbatch component (D) consisting of a ultra-soft heterophasic copolymer component.
Abstract:
Polyolefin compositions suitable for injection molded items e.g. for impact bumpers and car interiors comprising from 30% to 90% by weight of an heterophasic propylene polymer composition (A); and from 10% to 70% by weight of a multimodal ethylene/butene-1 copolymer (B); having density from 0.850 to 0.935 g/cm3, total comonomer content from 6% to 30% by weight, Mw/Mn from 4 to 20; intrinsic viscosity in decalin at 135° C. from 1.0 to 4.0 dL/g, and comprising an HDPE fraction (HDPE % wt) up to 30% wt; further comprising from 0 to 50% by weight of a filler (C) and optionally, in amount up to 10% by weight with respect to the overall composition, an impact modifier masterbatch component D consisting of an ultra-soft heterophasic copolymer component.
Abstract:
A method of depolymerizing plastics using a halloysite catalyst is described herein. The method reduces the energy required for the depolymerization process while achieving improved depolymerization results.
Abstract:
A method of depolymerizing plastics using a fluorinated alumina catalyst is described herein. The method reduces the energy required for the depolymerization process while achieving improved depolymerization results.
Abstract:
Polyolefin compositions suitable for injection molded items e.g. for impact bumpers and car interiors comprising from 30% to 90% by weight of an heterophasic propylene polymer composition (A); and from 10% to 70% by weight of a multimodal ethylene/butene-1 copolymer (B); having density from 0.850 to 0.935 g/cm3, total comonomer content from 6% to 30% by weight, Mw/Mn from 4 to 20; intrinsic viscosity in decalin at 135° C. from 1.0 to 4.0 dL/g, and comprising an HDPE fraction (HDPE % wt) up to 30% wt; further comprising from 0 to 50% by weight of a filler (C) and optionally, in amount up to 10% by weight with respect to the overall composition, an impact modifier masterbatch component D consisting of an ultra-soft heterophasic copolymer component.
Abstract:
A catalyst system obtainable by contacting: A) a metal complex of formula (I) B) an iron complex of the general formula (II) C) an alumoxane or a compound capable of forming an alkyl cation with complexes of formula (I) and (II); Wherein the variables are described in the description.
Abstract:
A process for the hydrodepolymerization of polymeric waste material at a hydrogen pressure from 20 to 500 bar, with a hydrocracking catalyst made from or containing (a) a hydrogenating component made from or containing a metal selected from the group consisting of Fe, Mo, W, Ti, Ni, Cr, V, Co, Zr, and mixtures thereof, supported on an inorganic carrier, and (b) a depolymerizing component being an acidic compound.
Abstract:
Methods of depolymerizing polyolefin-based material into useful petrochemical products using metal oxides and heat are described. The metal oxides improve the depolymerization reaction by decreasing the onset temperature for the depolymerization, which results in a higher depolymerization rate and a shorter residence time in the depolymerization unit, allowing for a predictable depolymerization reaction, and decreasing the branching or aromatic formations in the product.