Abstract:
The invention provides a primary carbamate functional material of the formula: 1 a method of making said materials and curable coating compositions comprising the primary carbamate functional material of the invention. The primary carbamate functional material comprises the reaction product of (1) at least one material P comprising one or more functional groups (i) which are reactive with a functional group Z but which are substantially nonreactive with a primary carbamate group X of monomeric reactive compound (2), and (2) a monomeric reactive compound comprising one or more structures of a particular formula.
Abstract:
The invention provides curable waterborne coating compositions comprising an aqueous dispersion (A) comprising an organic binder component (A1) comprising at least 5% by weight of a reactive component (a), based on the total weight of organic binder component (A1), and at least one crosslinking component (B). The reactive component (a) is substantially free of any heteratoms and is a not a crystalline solid at room temperature and comprises from (i) 12 to 72 carbon atoms, and (ii) at least two functional groups. The curable waterborne coating compositions of the invention show significantly improved pop resistance while also providing improved chip resistance, weathering resistance, flexibility, and/or scratch & mar resistance.
Abstract:
The curable coating compositions of the invention comprise a particulate component having at least one binder component (a) which is a solid at 75null F./24null C., and an additive component (b). The curable coating compositions further comprise a crosslinking component (c) reactive with the at least one binder component (a). Additive component (b) has from 12 to 72 carbon atoms, is substantially free of any heteroatoms, is not a crystalline solid at 75null F./24null C. and comprises a mixture of two or more structures selected from the group consisting of aliphatic structures for additive component (b), aromatic-containing structures for additive component (b), cycloaliphatic-containing structures for additive component (b), and mixtures thereof, wherein at least one of the two or more structures is either a cycloaliphatic-containing structure or an aromatic-containing structure. The curable coating compositions are useful as powder coating compositions and powder slurry coating compositions having improved application and/or performance properties.
Abstract:
Disclosed is a carbamate functional reactive polymer composition, comprising an acrylic resin (anull) comprising a functional group (F3) that is at least one of a primary carbamate group, a primary hydroxyl group, a secondary hydroxyl group, and mixtures thereof, and a nonvolatile solvent (bnullnv) that is not a crystalline solid at 75null C. but is a fluid solid at a temperature of free radical polymerization and comprises (i) four or more isomers, and (ii) at least two reactive functional groups (F2) that are selected from primary carbamate, primary hydroxyl, and secondary hydroxyl, wherein no more than 10% of the sum of functional groups (F2) and (F3) are primary hydroxyl groups and at least 60% of the sum of functional groups (F2) and (F3) are primary carbamate groups. In one exemplary embodiment, the reactive polymer composition is made by a disclosed method.
Abstract:
A method for providing cured coating films free of popping defects. The method requires the application to a substrate of at least 2.0 mils/50.8 microns of a uncured curable coating composition comprising an anti-popping component (a), a film-forming component (b), and a crosslinking component (c), wherein anti-popping component (a) has from 12 to 72 carbon atoms, is substantially free of any heteroatoms, is not a crystalline solid at room temperature and comprises a mixture of two or more structures selected from the group consisting of aliphatic structures for anti-popping component (a), aromatic-containing structures for anti-popping component (a), cycloaliphatic-containing structures for anti-popping component (a), and mixtures thereof, at least one of the two or more structures being a cycloaliphatic-containing structure or an aromatic-containing structure. The coated uncured substrate is cured to provide a cured film free of popping defects with an average film build of at least 2.0 mils/50.8 microns.
Abstract:
Provided is a curable coating composition comprising a reactive compound having one or more structures of the formula: 1 wherein X is a primary carbamate group, Y is a hydroxy or halide group, n is an integer of 2 or more, nnull is an integer of 1 or more, and R0, R1, R2, R3, R4 and R5 may be H or a group selected from alkyl groups, aliphatic groups, cycloaliphatic groups, aromatic groups and mixtures thereof, with the provisos that at least one R1 or R2 group is selected from the group consisting of aliphatic groups, cycloaliphatic groups, aromatic groups, and mixtures thereof, and in substantially all structures primary carbamate group X is attached to a carbon atom having a lower degree of substitution than a carbon atom to which functional group Y is attached.
Abstract:
A coating composition contains solid particulates of a mixture of an aminoplast crosslinking agent, a solid polymer having functionality reactive with the aminoplast crosslinking agent, and a crystalline, carbamate-functional additive. The crystalline, carbamate-functional additive has a melting point of at least about 30null C. and is up to about 15% by weight of the powder coating composition.
Abstract:
Compositions comprising a reaction product of a) an asymmetrical, saturated polyisocyanate that is non-cyclic, non-aromatic, and has at least 3 carbon atoms in the polyisocyanate per isocyanate group, b) a material that is at least one of i) a primary carbamate material having at least one functional group reactive with an isocyanate and at least one primary carbamate group or a group convertible to a primary carbamate group and ii) a reaction product of the primary carbamate material and an extending agent, and c) optionally, a chain extension agent that has at least difunctional reactivity with an isocyanate. Also, methods of making these compositions.